2013武大数分压轴题 - Eufisky - The lost book
一道杂志征解题的解答
一个初三竞赛几何题

2013武大数分压轴题

Eufisky posted @ 2015年10月16日 15:50 in 数学分析 with tags 考研 多元 , 1181 阅读

(13年武大数分)求$\displaystyle I = \iint\limits_\Sigma  {{{\left( {{x^2} + {y^2} + {z^2}} \right)}^{ - \frac{3}{2}}}{{\left( {\frac{{{x^2}}}{{{a^4}}} + \frac{{{y^2}}}{{{b^4}}} + \frac{{{z^2}}}{{{c^4}}}} \right)}^{ - \frac{1}{2}}}dS} $,其中$\sum$为椭球面: $\displaystyle \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1(a,b,c>0)$.


下面是自己的解答:

令$x = a\sin \varphi \cos \theta ,y = b\sin \varphi \sin \theta ,z = c\cos \varphi $,其中$0\leq \theta\leq 2\pi,0\leq\varphi \leq\pi$,经计算得到
\[\frac{{\partial \left( {y,z} \right)}}{{\partial \left( {\varphi ,\theta } \right)}} = bc{\sin ^2}\varphi \cos \theta ,\frac{{\partial \left( {z,x} \right)}}{{\partial \left( {\varphi ,\theta } \right)}} = ac{\sin ^2}\varphi \sin \theta ,\frac{{\partial \left( {x,y} \right)}}{{\partial \left( {\varphi ,\theta } \right)}} = ab\sin \varphi \cos \varphi ,\]
所以
\begin{align*}EG - {F^2} &= {\left( {\frac{{\partial \left( {y,z} \right)}}{{\partial \left( {\varphi ,\theta } \right)}}} \right)^2} + {\left( {\frac{{\partial \left( {z,x} \right)}}{{\partial \left( {\varphi ,\theta } \right)}}} \right)^2} + {\left( {\frac{{\partial \left( {x,y} \right)}}{{\partial \left( {\varphi ,\theta } \right)}}} \right)^2}\\& = {\left( {abc} \right)^2}{\sin ^2}\varphi \left( {\frac{{{{\sin }^2}\varphi {{\cos }^2}\theta }}{{{a^2}}} + \frac{{{{\sin }^2}\varphi {{\sin }^2}\theta }}{{{b^2}}} + \frac{{{{\cos }^2}\varphi }}{{{c^2}}}} \right).\end{align*}
而这时被积函数化为
\begin{align*}&{\left( {{x^2} + {y^2} + {z^2}} \right)^{ - \frac{3}{2}}}{\left( {\frac{{{x^2}}}{{{a^4}}} + \frac{{{y^2}}}{{{b^4}}} + \frac{{{z^2}}}{{{c^4}}}} \right)^{ - \frac{1}{2}}}\\= &{\left( {{a^2}{{\sin }^2}\varphi {{\cos }^2}\theta  + {b^2}{{\sin }^2}\varphi {{\sin }^2}\theta  + {c^2}{{\cos }^2}\varphi } \right)^{ - \frac{3}{2}}}\\&{\left( {\frac{{{{\sin }^2}\varphi {{\cos }^2}\theta }}{{{a^2}}} + \frac{{{{\sin }^2}\varphi {{\sin }^2}\theta }}{{{b^2}}} + \frac{{{{\cos }^2}\varphi }}{{{c^2}}}} \right)^{ - \frac{1}{2}}}.\end{align*}
因此
\[I = abc\iint\limits_{\left[ {0,\pi } \right] \times \left[ {0,2\pi } \right]} {{{\left( {{a^2}{{\sin }^2}\varphi {{\cos }^2}\theta  + {b^2}{{\sin }^2}\varphi {{\sin }^2}\theta  + {c^2}{{\cos }^2}\varphi } \right)}^{ - \frac{3}{2}}}\sin \varphi d\varphi d\theta } \]
 
注意到这么一个事实,当$M+Nx^2$不取$0$且$M\neq 0$时,我们有
\[\int {{{\left( {M + N{x^2}} \right)}^{ - 3/2}}dx}  = \frac{1}{M} \cdot \frac{x}{{\sqrt {M + N{x^2}} }} + C.\]
 
\begin{align*}I &= abc\int_0^{2\pi } {d\theta } \int_0^\pi  {{{\left( {{a^2}{{\sin }^2}\varphi {{\cos }^2}\theta  + {b^2}{{\sin }^2}\varphi {{\sin }^2}\theta  + {c^2}{{\cos }^2}\varphi } \right)}^{ - \frac{3}{2}}}\sin \varphi d\varphi } \\&=  - abc\int_0^{2\pi } {d\theta } \int_0^\pi  {{{\left( {{a^2}{{\sin }^2}\varphi {{\cos }^2}\theta  + {b^2}{{\sin }^2}\varphi {{\sin }^2}\theta  + {c^2}{{\cos }^2}\varphi } \right)}^{ - \frac{3}{2}}}d\left( {\cos \varphi } \right)} \\&=  - abc\int_0^{2\pi } {d\theta } \int_0^\pi  {{{\left[ {\left( {{a^2}{{\cos }^2}\theta  + {b^2}{{\sin }^2}\theta } \right) + \left( {{c^2} - {a^2}{{\cos }^2}\theta  - {b^2}{{\sin }^2}\theta } \right){{\cos }^2}\varphi } \right]}^{ - \frac{3}{2}}}d\left( {\cos \varphi } \right)} \\&= abc\int_0^{2\pi } {d\theta } \int_{ - 1}^1 {{{\left[ {\left( {{a^2}{{\cos }^2}\theta  + {b^2}{{\sin }^2}\theta } \right) + \left( {{c^2} - {a^2}{{\cos }^2}\theta  - {b^2}{{\sin }^2}\theta } \right){x^2}} \right]}^{ - \frac{3}{2}}}dx} \\&= abc\int_0^{2\pi } {\frac{2}{{\left( {{a^2}{{\cos }^2}\theta  + {b^2}{{\sin }^2}\theta } \right)c}}d\theta }  = 4ab\int_0^\pi  {\frac{1}{{{a^2}{{\cos }^2}\theta  + {b^2}{{\sin }^2}\theta }}d\theta } .\end{align*}
\begin{align*}&\int_0^\pi  {\frac{1}{{{a^2}{{\cos }^2}\theta  + {b^2}{{\sin }^2}\theta }}d\theta }  = \int_0^{\frac{\pi }{2}} {\frac{1}{{{a^2}{{\cos }^2}\theta  + {b^2}{{\sin }^2}\theta }}d\theta }  + \int_{\frac{\pi }{2}}^\pi  {\frac{1}{{{a^2}{{\cos }^2}\theta  + {b^2}{{\sin }^2}\theta }}d\theta } \\= &\int_0^{\frac{\pi }{2}} {\frac{1}{{{a^2}{{\cos }^2}\theta  + {b^2}{{\sin }^2}\theta }}d\theta }  + \int_0^{\frac{\pi }{2}} {\frac{1}{{{a^2}{{\sin }^2}\theta  + {b^2}{{\cos }^2}\theta }}d\theta } \\= &\int_0^{ + \infty } {\frac{1}{{{a^2} + {b^2}{x^2}}}d}  + \int_0^{ + \infty } {\frac{1}{{{a^2}{x^2} + {b^2}}}dx}  = \frac{1}{{ab}}\left. {\arctan \left( {\frac{b}{a}x} \right)} \right|_0^{ + \infty } + \frac{1}{{ab}}\left. {\arctan \left( {\frac{a}{b}x} \right)} \right|_0^{ + \infty }\\= &\frac{\pi }{{ab}}.\end{align*}
进而得到
\[I = 4ab\int_0^\pi  {\frac{1}{{{a^2}{{\cos }^2}\theta  + {b^2}{{\sin }^2}\theta }}d\theta }  = 4\pi .\]

另外有更好的方法:(Hansschwarzkopf)

注意到$\Sigma$ 在点$(x,y,z)$处的单位外法向量是
$$n=\frac{\left(\frac{x}{a^2},\frac{y}{b^2},\frac{z}{c^2}\right)}{\sqrt{\frac{x^2}{a^4}+\frac{y^2}{b^4}+\frac{z^2}{c^4}}},$$
且$1=x\cdot \frac{x}{a^2}+y\cdot\frac{y}{b^2}+z\cdot\frac{z}{c^2}$.
从而原积分可写成第二型曲面积分
$$\iint\limits_\Sigma \frac{xdydz+yd zd x+zdxdy}{\sqrt{(x^2+y^2+z^2)^3}}.$$
作小球面$S_\varepsilon: x^2+y^2+z^2=\varepsilon^2$. 运用Gauss公式可知
$$\iint\limits_\Sigma \frac{xd yd z+yd zd x+zd xd y}{\sqrt{(x^2+y^2+z^2)^3}} =\iint\limits_{S_\varepsilon} \frac{xdyd z+ydzd x+zd xd y}{\sqrt{(x^2+y^2+z^2)^3}}=4\pi.$$ 即
$$\iint\limits_\Sigma\frac{d S}{\sqrt{(x^2+y^2+z^2)^3}\sqrt{\frac{x^2}{a^4}+\frac{y^2}{b^4}+\frac{z^2}{c^4}}}=4\pi.$$

 


登录 *


loading captcha image...
(输入验证码)
or Ctrl+Enter