求和的一些估计式 - Eufisky - The lost book
取整函数的求和问题
又一道二元反常积分题

求和的一些估计式

Eufisky posted @ 2015年10月21日 23:56 in 数学分析 with tags 求和 , 1164 阅读

计算$$\displaystyle\lim_{n\rightarrow\infty}\left({2\sqrt n}-\sum_{k=1}^n\frac{1}{\sqrt k}\right).$$


Use $\sqrt{n} = \sum_{k=1}^n \left( \sqrt{k} - \sqrt{k-1} \right)$, then
\begin{align*}&2 \sqrt{n} - \sum_{k=1}^n \frac{1}{\sqrt{k}} \\=& \sum_{k=1}^n \left( 2 \sqrt{k} - 2 \sqrt{k-1} - \frac{1}{\sqrt{k}} \right) = \sum_{k=1}^n \frac{1}{\sqrt{k}}  \left( \sqrt{k}-\sqrt{k-1} \right)^2\\=& \sum_{k=1}^n \frac{1}{\sqrt{k}} \left( \frac{(\sqrt{k}-\sqrt{k-1})(\sqrt{k}+\sqrt{k-1})}{(\sqrt{k}+\sqrt{k-1})} \right)^2 \\=& \sum_{k=1}^n \frac{1}{\sqrt{k} \left(\sqrt{k}+\sqrt{k-1}\right)^2}.\end{align*}
 
This shows the limit does exist and $\lim_{n \to \infty} \left( 2 \sqrt{n} - \sum_{k=1}^n \frac{1}{\sqrt{k}} \right) = \sum_{k=1}^\infty  \frac{1}{\sqrt{k} \left(\sqrt{k}+\sqrt{k-1}\right)^2}$.
 
The value of this sums equals $-\zeta\left(\frac{1}{2} \right) \approx 1.4603545$. This value is found by other means, though:
$$2 \sqrt{n} - \sum_{k=1}^n \frac{1}{\sqrt{k}} = 2 \sqrt{n} - \left( \zeta\left(\frac{1}{2}\right) - \zeta\left(\frac{1}{2}, n+1\right)\right) \sim -\zeta\left(\frac{1}{2}\right) - \frac{1}{2\sqrt{n}} + o\left( \frac{1}{n} \right) .$$ 
 

登录 *


loading captcha image...
(输入验证码)
or Ctrl+Enter