谢惠民题解之23.2含参变量广义积分 - Eufisky - The lost book
谢之题解:一道综合性的解几题

谢惠民题解之23.2含参变量广义积分

Eufisky posted @ 2015年11月19日 15:18 in 谢惠民 with tags 谢惠民 , 995 阅读

1.讨论下列广义积分的一致收敛性:

(1) $\displaystyle \int_0^{ + \infty } {{e^{ - \left( {1 + {a^2}} \right)t}}\sin tdt} ,\quad a \in \left( { - \infty , + \infty } \right)$;

(2) $\displaystyle \int_0^{ + \infty } {\frac{{\cos xy}}{{\sqrt {x + y} }}dx} ,\quad y \in \left[ {{y_0}, + \infty } \right)$,其中$y_0>0$;

(3) $\displaystyle \int_0^{ + \infty } {{e^{ - t{x^2}}}dx} ,\quad t \in \left( {0, + \infty } \right)$;

(4) $\displaystyle \int_1^{ + \infty } {{e^{ - \alpha x}}\frac{{\cos x}}{{\sqrt x }}dx} ,\quad \alpha \in \left[ {0, + \infty } \right)$;

(5) $\displaystyle \int_0^{ + \infty } {{e^{ - {{\left( {x - y} \right)}^2}}}dx} ,\quad y \in \left( { - \infty , + \infty } \right)$;

(6) $\displaystyle \int_0^{ + \infty } {x\ln x{e^{ - t\sqrt x }}dx}$,$\quad$ (1) $t\in [t_0,+\infty)$,其中$t_0>0$,$\quad$ (2) $t\in (0,+\infty)$;

(7) $\displaystyle \int_1^{ + \infty } {\frac{{1 - {e^{ - ut}}}}{t}\cos tdt} ,\quad u \in \left[ {0,1} \right]$;

(8) $\displaystyle \int_0^{ + \infty } {\frac{{\alpha t}}{{1 + {\alpha ^2} + {t^2}}} \cdot {e^{ - {\alpha ^2}{t^2}}}\cos {\alpha ^2}{t^2}dt} ,\quad \alpha \in \left( {0, + \infty } \right)$;

(9) $\displaystyle \int_0^{ + \infty } {{e^{ - {x^2}\left( {1 + {y^2}} \right)}}\sin ydy} ,\quad x \in \left( {0, + \infty } \right)$;

(10) $\displaystyle \int_0^{ + \infty } {\frac{{\alpha dx}}{{1 + {\alpha ^2}{x^2}}}} ,\quad \alpha \in \left( {0,1} \right)$;

(11) $\displaystyle \int_0^2 {\frac{{{x^t}}}{{\sqrt[3]{{\left( {x - 1} \right)\left( {x - 2} \right)}}}}dx} ,\quad \left| t \right| < \frac{1}{2}$;

(12) $\displaystyle \int_0^1 {{{\left( {1 - x} \right)}^{u - 1}}dx}$,$\quad$ (1) $u\in [a,+\infty)$,其中$a>0$,$\quad$ (2) $u\in (0,+\infty)$.


解.

(1) 一致收敛.由于

\[\left| {{e^{ - \left( {1 + {a^2}} \right)t}}\sin t} \right| \le {e^{ - t}},\quad 0 \le t < + \infty , - \infty < a < + \infty ,\]

而$\int_0^{ + \infty } {{e^{ - t}}dt} = 1$收敛,由Weierstrass判别法知, $\int_0^{ + \infty } {{e^{ - \left( {1 + {a^2}} \right)t}}\sin tdt}$在$\left( { - \infty , + \infty } \right)$上一致收敛.

 

(2) 一致收敛.由于

\[\left| {\int_0^A {\cos xydx} } \right| = \left| {\frac{{\sin Ay}}{y}} \right| \le \frac{1}{y} \le \frac{1}{{{y_0}}}, \quad A \ge 0,y \ge {y_0},\]

因此它在$[y_0,+\infty)$一致有界.而$1/\sqrt{x+y}$是$x$的单调减少函数且$0<1/\sqrt{x+y}\leq 1/\sqrt{x+y_0}$,而$\lim_{x\to +\infty} \frac{1}{\sqrt{x+y_0}}=0$, 故这个极限关于$y$在$[y_0,+\infty)$上是一致的.于是由Dirichlet判别法知$\int_0^{ + \infty } {\frac{{\cos xy}}{{\sqrt {x + y} }}dx} $在$\left[ {{y_0}, + \infty } \right)$上一致收敛.

 

(3) 非一致收敛.对于正整数$n$,取$t_n=\frac1{n^2}$,这时

\begin{align*}\left| {\int_n^{2n} {{e^{ - {t_n}{x^2}}}dx} } \right| &= \int_n^{2n} {{e^{ - \frac{1}{{{n^2}}}{x^2}}}dx} > \int_n^{2n} {{e^{ - \frac{1}{{{n^2}}}{{\left( {2n} \right)}^2}}}dx} \\&= \int_n^{2n} {{e^{ - 4}}dx} = {e^{ - 4}}n \ge {e^{ - 4}}.\end{align*}

因此,只要取$\varepsilon_0=e^{-4}$,则对于任意大的正数$A_0$,总存在正整数$n$满足$n>A_0$,及$t_n=1/n^2\in (0,+\infty)$,使得$\left| {\int_n^{2n} {{e^{ - {t_n}{x^2}}}dx} } \right| > {e^{ - 4}} = {\varepsilon _0}$.由Cauchy收敛原理的推论可知$\int_0^{ + \infty } {{e^{ - t{x^2}}}dx} $关于$t$在$\left( {0, + \infty } \right)$上非一致收敛.

 

(4) $\int_1^A {\cos xdx}$显然有界, $1/\sqrt{x}$在$[1,+\infty)$上单调且$\lim_{x\to +\infty}\frac{1}{\sqrt{x}}=0$,由Dirichlet判别法, $\int_1^{+\infty}\frac{\cos x}{\sqrt{x}}$收敛,它当然关于$\alpha$一致收敛.显然$e^{-\alpha x}$关于$x$单调,且\[0\leq e^{-\alpha x}\leq 1,\quad 0\leq \alpha<+\infty,1\leq x<+\infty,\]即$e^{-\alpha x}$一致有界.由Abel判别法, $\int_1^{ + \infty } {{e^{ - \alpha x}}\frac{{\cos x}}{{\sqrt x }}dx}$在$\left[ {0, + \infty } \right)$上一致收敛.

 

(5) 不一致收敛.注意到$\displaystyle J\left( A \right) = \int_A^{2A} {{e^{ - {{\left( {x - y} \right)}^2}}}dx} = \int_{A - y}^{2A - y} {{e^{ - {u^2}}}du}$,并让$y$取$A$值,则得$\displaystyle J\left( A \right) = \int_0^A {{e^{ - {u^2}}}du} \to \int_0^{ + \infty } {{e^{ - {u^2}}}du} \left( {A \to + \infty } \right)$,即$J(A)$在$A\to +\infty$时不趋于$0$.

 

(6) 先证明$\int_0^{ + \infty } {x\ln x{e^{ - t\sqrt x }}dx}$在$[t_0,+\infty)(t_0>0)$上一致收敛.由于

\[\left| {x\ln x{e^{ - t\sqrt x }}} \right| \le \left| {x\ln x} \right|{e^{ - {t_0}\sqrt x }},\quad 0\leq x<+\infty,t_0\leq t<+\infty,\]

而$\int_0^1 {x\ln \frac{1}{x}{e^{ - {t_0}\sqrt x }}dx}$与$\int_1^{ + \infty } {x\ln x{e^{ - {t_0}\sqrt x }}dx}$均收敛,由Weierstrass判别法知,

$\int_0^{ + \infty } {x\ln x{e^{ - t\sqrt x }}dx}$在$[t_0,+\infty)$上一致收敛.

 

再证明$\int_0^{ + \infty } {x\ln x{e^{ - t\sqrt x }}dx}$在$(0,+\infty)$上非一致收敛.对于正整数$n$,取$t_n=\frac{1}{\sqrt{n}}$,这时

\begin{align*}&\left| {\int_n^{2n} {x\ln x{e^{ - {t_n}\sqrt x }}dx} } \right| = \left| {\int_n^{2n} {x\ln x{e^{ - \frac{1}{{\sqrt n }}\sqrt x }}dx} } \right|\\>& n\ln n\int_n^{2n} {{e^{ - \frac{1}{{\sqrt n }}\sqrt x }}dx} > n\ln n\int_n^{2n} {{e^{ - \frac{1}{{\sqrt n }}\sqrt {2n} }}dx} \\=& {n^2}\ln n \cdot {e^{ - \sqrt 2 }} \ge 4\ln 2 \cdot {e^{ - \sqrt 2 }}.\end{align*}

因此,只要取${\varepsilon _0} = 4\ln 2 \cdot {e^{ - \sqrt 2 }}$,则对于任意大的正数$A_0$,总存在正整数$n$满足$n>A_0$,及$y_n=\frac1{\sqrt n}\in (0,+\infty)$,使得$\left| {\int_n^{2n} {x\ln x{e^{ - {t_n}\sqrt x }}dx} } \right| > 4\ln 2 \cdot {e^{ - \sqrt 2 }}=\varepsilon_0$.由Cauchy收敛原理的推论知$\int_0^{ + \infty } {x\ln x{e^{ - t\sqrt x }}dx}$关于$t$在$(0,+\infty)$上非一致收敛.

 

(7) 一致收敛.由于$\int_1^{ + \infty } {\frac{{\cos t}}{t}dt}$收敛,它当然关于$u$一致收敛.显然$1-e^{-ut}$关于$t$单调,且

\[0\leq 1-e^{-ut}\leq 1,\quad 0\leq u\leq1,1\leq t<+\infty,\]即$1-e^{-ut}$一致有界.由Abel判别法, $\int_1^{ + \infty } {\frac{{1 - {e^{ - ut}}}}{t}\cos tdt}$在$\left[ {0,1} \right]$上一致收敛.

 

(8) 一致收敛.由于\[\left| {\int_0^A {\alpha t \cdot {e^{ - {\alpha ^2}{t^2}}}\cos {\alpha ^2}{t^2}dt} } \right| \le \int_0^A {\alpha t \cdot {e^{ - {\alpha ^2}{t^2}}}dt} = \frac{{1 - {e^{ - {\alpha ^2}{A^2}}}}}{{2\alpha }},\]且\[\mathop {\lim }\limits_{\alpha \to 0} \frac{{1 - {e^{ - {\alpha ^2}{A^2}}}}}{{2\alpha }} = 0,\mathop {\lim }\limits_{\alpha \to + \infty } \frac{{1 - {e^{ - {\alpha ^2}{A^2}}}}}{{2\alpha }} = 0,\]

因此它在$(0,+\infty)$一致有界,而$\frac{1}{{1 + {\alpha ^2} + {t^2}}}$是$x$的单调减少函数且$\frac{1}{{1 + {\alpha ^2} + {t^2}}} \le \frac{1}{{1 + {t^2}}},\lim_{t\to \infty}\frac1{1+t^2}=0$,因此$\lim_{t\to +\infty}\frac{1}{{1 + {\alpha ^2} + {t^2}}}=0$关于$\alpha$在$(0,+\infty)$上是一致的,于是由Dirichlet判别法知$\int_0^{ + \infty } {\frac{{\alpha t}}{{1 + {\alpha ^2} + {t^2}}} \cdot {e^{ - {\alpha ^2}{t^2}}}\cos {\alpha ^2}{t^2}dt}$在$\left( {0, + \infty } \right)$上一致收敛.

 

(9) 非一致收敛.对于正整数$n$,取${x_n} = \frac{1}{{\sqrt {1 + {{\left( {2n + 1} \right)}^2}{\pi ^2}} }}$,这时

\begin{align*}\left| {\int_{2n\pi }^{\left( {2n + 1} \right)\pi } {{e^{ - x_n^2\left( {1 + {y^2}} \right)}}\sin ydy} } \right| &= \left| {\int_{2n\pi }^{\left( {2n + 1} \right)\pi } {{e^{ - \frac{1}{{1 + {{\left( {2n + 1} \right)}^2}{\pi ^2}}}\left( {1 + {y^2}} \right)}}\sin ydy} } \right|\\&> \frac{1}{e}\int_{2n\pi }^{\left( {2n + 1} \right)\pi } {\sin ydy} = \frac{2}{e}.\end{align*}

因此,只要取$\varepsilon_0=2/e$,则对于任意大的正数$A_0$,总存在正整数$n$满足$2n\pi>A_0$,及$y_n=\frac{1}{{\sqrt {1 + {{\left( {2n + 1} \right)}^2}{\pi ^2}} }} \in (0,+\infty)$,使得$\left| {\int_{2n\pi }^{\left( {2n + 1} \right)\pi } {{e^{ - x_n^2\left( {1 + {y^2}} \right)}}\sin ydy} } \right| > \frac{2}{e}=\varepsilon_0$.由Cauchy收敛原理的推论知$\int_0^{ + \infty } {{e^{ - {x^2}\left( {1 + {y^2}} \right)}}\sin ydy} $关于$x$在$\left( {0, + \infty } \right)$上非一致收敛.

 

(10) 非一致收敛.对于任意取定的正数$A$,由于\[\int_A^{ + \infty } {\frac{{\alpha dx}}{{1 + {\alpha ^2}{x^2}}}} = \frac{\pi }{2} - \arctan \left( {\alpha A} \right),\]取$\alpha=1/A$,则有\[\int_A^{ + \infty } {\frac{{\alpha dx}}{{1 + {\alpha ^2}{x^2}}}} = \int_A^{ + \infty } {\frac{{1/A}}{{1 + {x^2}/{A^2}}}dx} = \frac{\pi }{4} .\]因此$\int_0^{ + \infty } {\frac{{\alpha dx}}{{1 + {\alpha ^2}{x^2}}}}$在$\left( {0,1} \right)$上不一致收敛.

 

(11) 一致收敛.见周民强207页.利用

当$0<x<1$时,我们有

\[0 \le \left| {\frac{{{x^t}}}{{\sqrt[3]{{\left( {x - 1} \right)\left( {x - 2} \right)}}}}} \right| < \frac{1}{{\sqrt x \sqrt[3]{{\left( {x - 1} \right)\left( {x - 2} \right)}}}}.\]

当$1<x<2$时,有

\[0 \le \left| {\frac{{{x^t}}}{{\sqrt[3]{{\left( {x - 1} \right)\left( {x - 2} \right)}}}}} \right| < \frac{{\sqrt x }}{{\sqrt[3]{{\left( {x - 1} \right)\left( {2 - x} \right)}}}}.\]

因此有

\[\int_0^2 {\frac{{{x^t}}}{{\sqrt[3]{{\left( {x - 1} \right)\left( {x - 2} \right)}}}}dx} < \int_0^1 {\frac{1}{{\sqrt x \sqrt[3]{{\left( {1 - x} \right)\left( {2 - x} \right)}}}}dx} + \int_1^2 {\frac{{\sqrt x }}{{\sqrt[3]{{\left( {x - 1} \right)\left( {2 - x} \right)}}}}dx} .\]

注意到下列渐进估计

\begin{align*}{\frac{1}{{\sqrt x \sqrt[3]{{\left( {1 - x} \right)\left( {2 - x} \right)}}}}} &= O\left( {\frac{1}{{\sqrt x }}} \right),x \to {0^ + },\\{\frac{1}{{\sqrt x \sqrt[3]{{\left( {1 - x} \right)\left( {2 - x} \right)}}}}} &= O\left( {\frac{1}{{\sqrt[3]{{x - 1}}}}} \right),x \to 1,\\\frac{{\sqrt x }}{{\sqrt[3]{{\left( {x - 1} \right)\left( {2 - x} \right)}}}} &= O\left( {\frac{1}{{\sqrt[3]{{x - 1}}}}} \right),x \to 1,\\\frac{{\sqrt x }}{{\sqrt[3]{{\left( {x - 1} \right)\left( {2 - x} \right)}}}} &= O\left( {\frac{1}{{\sqrt[3]{{2 - x}}}}} \right),x \to 2,\end{align*}

可知右端积分均收敛.由Weierstrass判别法可知,原积分关于$|t|<1/2$一致收敛.

 

(12) 先证明$\int_0^1 {{{\left( {1 - x} \right)}^{u - 1}}dx}$在$[a,+\infty)(a>0)$上一致收敛.由于\[{\left( {1 - x} \right)^{u - 1}} \le {\left( {1 - x} \right)^{a - 1}},\quad 0 \le x \le 1,a \le u < + \infty,\]而$\int_0^1 {{{\left( {1 - x} \right)}^{a - 1}}dx} = \frac{1}{a}$收敛,由Weierstrass判别法知, $\int_0^1 {{{\left( {1 - x} \right)}^{u - 1}}dx}$在$[a,+\infty)$上一致收敛.

 

再证明$\int_0^1 {{{\left( {1 - x} \right)}^{u - 1}}dx}$在$(0,+\infty)$上非一致收敛.对于任意取定的正数$A$且$A\to 0$,由于\[\int_A^1 {{{\left( {1 - x} \right)}^{u - 1}}dx} = \frac{1}{A},\]

取$u=A\in (0,+\infty )$,当$A$足够小时,我们有\[\int_A^1 {{{\left( {1 - x} \right)}^{u - 1}}dx} = \frac{{{{\left( {1 - A} \right)}^u}}}{u} = \frac{{{{\left( {1 - A} \right)}^A}}}{A} > 1.\]因此$\int_0^1 {{{\left( {1 - x} \right)}^{u - 1}}dx}$在$(0,+\infty)$上非一致收敛.


2.设$\displaystyle \int_0^{ + \infty } {{x^\lambda }f\left( x \right)dx}$当$\lambda=a,\lambda=b$时收敛$(a<b)$.证明$\displaystyle \int_0^{ + \infty } {{x^\lambda }f\left( x \right)dx}$当$\lambda=a,\lambda=b$关于$\lambda\in [a,b]$一致收敛.


证.这题来自菲哥第二册P577.积分$\int_0^1 {{x^a}f\left( x \right)dx}$是收敛的,而$x^{\lambda-a}$对于$\lambda\geq a$的值是$x$的单调函数,并以$1$为界.因此积分

\[\int_0^1 {{x^\lambda }f\left( x \right)dx} = \int_0^1 {{x^{\lambda - a}} \cdot {x^a}f\left( x \right)dx} \]关于$\lambda$一致收敛.类似地可以看出以下积分

\[\int_1^{ + \infty } {{x^\lambda }f\left( x \right)dx} = \int_1^{ + \infty } {{x^{\lambda - b}} \cdot {x^b}f\left( x \right)dx} ,\]

关于$\lambda\leq b$一致收敛.因此原积分一致收敛.


3.证明积分$\int_0^{ + \infty } {x{e^{ - xy}}dy}$在$(0,+\infty)$上不一致收敛.


证.对于任意取定的正数$A$,由于

\[\int_A^{ + \infty } {x{e^{ - xy}}dy} = {e^{ - Ax}},\]

取$x=1/A\in (0,+\infty)$,则有

\[\int_A^{ + \infty } {x{e^{ - xy}}dy} = \frac{1}{e}.\]因此$\int_0^{ + \infty } {x{e^{ - xy}}dy}$在$(0,+\infty)$上不一致收敛.


登录 *


loading captcha image...
(输入验证码)
or Ctrl+Enter