中科院数学系统院高校招生考试试题 - Eufisky - The lost book
武汉大学2016年基础数学复试笔试试题
中科院数学系统院2016年夏令营试题

中科院数学系统院高校招生考试试题

Eufisky posted @ 2016年5月01日 03:43 in 考研 with tags 中科院 直博 , 2095 阅读

 

 愿以一朵花的姿态行走世间,看得清世间繁杂却不在心中留下痕迹,花开成景,花落成诗。

 

 

1 浙大考题

 

中国科学院大学

2016 年高校招生考试:数学(甲卷)

 满分100分,考试时间120分钟

 

1. (15分)求\[\int_0^{ + \infty } {\frac{{{e^{ - ax}} - {e^{ - bx}}}}{x}dx} \quad \left( {b > a} \right).\]

 

2. (15分) $\sum_{i=1}^n a_n$发散, $a_n$为正项级数.求证:

(1) $\sum_{i=1}^\infty \frac{a_n}{S_n}$发散;

(2) $\sum_{i=1}^\infty \frac{a_{n+1}}{S_n}$发散.

 

3. (15分) 求

\[\int\limits_{{x^2} + {y^2} + {z^2} = {R^2}} {\frac{{dS}}{{\sqrt {{x^2} + {y^2} + {{\left( {z - h} \right)}^2}} }}} .\]

 

4. (15分) 设$A:V\to V$,\[{H_{A,\alpha }}\left( t \right) = \left\{ {\varphi \left( t \right)\left| {\varphi \left( x \right) \in Q\left[ t \right],\varphi \left( x \right) \cdot \alpha = 0} \right.} \right\}\]中次数最小的一个.证: $\exists \alpha \in V$,使${H_{A,\alpha }}\left( t \right)$为$A$的极小多项式.

 

1.1 某同学面试问题

 

1. 求\[\int_{ - \infty }^{ + \infty } {\frac{1}{{\left( {1 + {x^2}} \right)\left( {1 + {x^6}} \right)}}dx} .\]

 

2. 举一个无穷次可导却不解析的函数.

 

2 湖南大学考题

 

中国科学院大学

2016 年高校招生考试:数学(乙卷)

满分100分,考试时间120分钟

 

1. (15分)

(1) 求极限$\mathop {\lim }_{x \to - \infty } \left( {\sqrt {\left( {x + a} \right)\left( {x + b} \right)} + x} \right)$;

 

(2) 设$f(x)$满足$f\left( x \right) + 2f\left( {\frac{1}{x}} \right) = \frac{3}{x}$,求$f(x)$的导数;

 

(3) 求$\mathop {\lim }_{n \to \infty } \sqrt[n]{{\frac{{{n^n}}}{{n!}}}}$.

 

2. (15分)设$r\geq 0$,求积分\[\frac{1}{{2\pi }}\int_0^{2\pi } {\log \left( {1 - 2r\cos x + {r^2}} \right)dx} .\]

 

 

 

3. (10分)设$0<\mu <1,a>0$, $M_n$是$e^{-(x+ax^\mu )x^n}$在$(0,+\infty)$上的最大值.求\[\mathop {\lim }\limits_{n \to \infty } {\left( {\frac{{{M_n}}}{{n!}}} \right)^{{n^{ - \mu }}}}.\]

 

4. (10分)设函数$f(x)$在闭区间$[a,b]$上二次连续可微,并且$f(a)=f(b)=0$.证明不等式:

\[{M^2} \le \frac{{{{\left( {b - a} \right)}^3}}}{2}\int_a^b {{{\left| {f''\left( x \right)} \right|}^2}dx} ,\]其中$M=\sup_{a\leq x\leq b}|f(x)|$.

 

5. (10分)设$A = \left( {\begin{array}{*{20}{c}}4&0\\0&1\end{array}} \right),B = \left( {\begin{array}{*{20}{c}}{\cos \theta }&{ - \sin \theta }\\{\sin \theta }&{\cos \theta }\end{array}} \right)\left( {\begin{array}{*{20}{c}}3&0\\0&{ - 2}\end{array}} \right){\left( {\begin{array}{*{20}{c}}{\cos \theta }&{ - \sin \theta }\\{\sin \theta }&{\cos \theta }\end{array}} \right)^{ - 1}}$,求以下矩阵的特征根:

\[A + B,A \otimes \left( {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right) + \left( {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right) \otimes B,A \otimes B.\]

 

注:对$A = \left( {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}\\{{a_{21}}}&{{a_{22}}}\end{array}} \right),B = \left( {\begin{array}{*{20}{c}}{{b_{11}}}&{{b_{12}}}\\{{b_{21}}}&{{b_{22}}}\end{array}} \right)$,张量积定义为$A \otimes B = \left( {\begin{array}{*{20}{c}}{{a_{11}}B}&{{a_{12}}B}\\{{a_{21}}B}&{{a_{22}}B}\end{array}} \right)$.

 

6. (10分)证明以下矩阵组成的集合是实数域上的线性空间,求其维数及一组基,并证明行列式$\det X$是二次型,写出其对应的双线性型.

\[M = \left\{ {X = \left( {\begin{array}{*{20}{c}}{{x_0} + {x_3}}&{{x_1} - i{x_2}}\\{{x_1} + i{x_2}}&{{x_0} - {x_3}}\end{array}} \right):{x_0},{x_1},{x_2},{x_3} \in \mathbb{R} } \right\}.\]

 

7. (20分)设可逆矩阵$A\in M_n(\mathbb C)$的特征值为$\lambda_1,\cdots,\lambda_n$.求线性变换

\[M_n(\mathbb C)\to M_n(\mathbb C),\quad X\mapsto AXA'\]

的全部特征值.

 

注:$M_n(\mathbb C)$表示定义在复数域$\mathbb C$上的$n$阶方阵.

 

 

 

 

3 西安交大考题

 

中国科学院大学

2016 年高校招生考试:数学(乙卷)

满分100分,考试时间120分钟

1. (15分)

 

(1) 求极限$\mathop {\lim }_{x \to - \infty } \left( {\sqrt {\left( {x + a} \right)\left( {x + b} \right)} + x} \right)$;

 

(2) 设$f(x)$满足$f\left( x \right) + 2f\left( {\frac{1}{x}} \right) = \frac{3}{x}$,求$f(x)$的导数;

 

(3) 设$f:[0,1]\to R$连续,求$\mathop {\lim }_{n \to \infty } \int_0^1 {\int_0^1 \cdots } \int_0^1 {f\left( {\frac{{{x_1} \cdots {x_n}}}{n}} \right)d{x_1}d{x_2} \cdots d{x_n}} $.

 

解法一.设$|f|$最大值为$M$.对任何$\varepsilon>0$,存在$\delta>0$,使得当$|x-1/2|<\delta$时,有$$\left|f(x)-f(\frac{1}{2})\right|<\varepsilon.$$

\begin{align*}&\int_{[0,1]^n}\left| f\left(\frac{x_1+x_2+\cdots+x_n}{n}\right)-f(\frac{1}{2})\right|dx_1dx_2\cdots dx_n\\\leq &\int_{\left|\frac{x_1+x_2+\cdots+x_n}{n}-\frac{1}{2}\right|\geq\delta}\left| f\left(\frac{x_1+x_2+\cdots+x_n}{n}\right)-f(\frac{1}{2})\right|dx_1dx_2\cdots dx_n\\+&\int_{\left|\frac{x_1+x_2+\cdots+x_n}{n}-\frac{1}{2}\right|<\delta}\left| f\left(\frac{x_1+x_2+\cdots+x_n}{n}\right)-f(\frac{1}{2})\right|dx_1dx_2\cdots dx_n\\\leq&2M\int_{\left|\frac{x_1+x_2+\cdots+x_n}{n}-\frac{1}{2}\right|\geq\delta}dx_1dx_2\cdots dx_n+\varepsilon\\\leq&\frac{2M}{\delta^2}\int_{\left|\frac{x_1+x_2+\cdots+x_n}{n}-\frac{1}{2}\right|\geq\delta}\left|\frac{x_1+x_2+\cdots+x_n}{n}-\frac{1}{2}\right|^2dx_1dx_2\cdots dx_n+\varepsilon\\\leq&\frac{2M}{\delta^2}\int_{[0,1]^n}\left|\frac{x_1+x_2+\cdots+x_n}{n}-\frac{1}{2}\right|^2dx_1dx_2\cdots dx_n+\varepsilon\\=&\frac{M}{6n\delta^2}+\varepsilon.\end{align*}

因此$$\limsup_{n\rightarrow\infty}\int_{[0,1]^n}\left| f\left(\frac{x_1+x_2+\cdots+x_n}{n}\right)-f(\frac{1}{2})\right|dx_1dx_2\cdots dx_n\leq \varepsilon.$$

令$\varepsilon\rightarrow0$即可.

 

解法二.由科尔莫格罗夫强大数定律得$$\frac{{{X_1} + {X_2} + \cdots + {X_n}}}{n}\mathop \to \limits^{a.s.} E\left( {{X_i}} \right) = \frac{1}{2}\left( {n \to + \infty } \right).$$

又因为$f(x)$连续有界,由控制收敛定理可知

$$\mathop {\lim }\limits_{n \to \infty } E\left( {f\left( {\frac{{{X_1} + {X_2} + \cdots + {X_n}}}{n}} \right)} \right) = E\left( {\mathop {\lim }\limits_{n \to \infty } f\left( {\frac{{{X_1} + {X_2} + \cdots + {X_n}}}{n}} \right)} \right) = E\left( {f\left( {\mathop {\lim }\limits_{n \to \infty } \frac{{{X_1} + {X_2} + \cdots + {X_n}}}{n}} \right)} \right) = f\left( {\frac{1}{2}} \right).$$

 

2. (15分)设$r\geq 0$,求积分\[\frac{1}{{2\pi }}\int_0^{2\pi } {\log \left( {1 - 2r\cos x + {r^2}} \right)dx} .\]

 

 

3. (20分)设$0<\mu <1,a>0$, $M_n$是$e^{-(x+ax^\mu )x^n}$在$(0,+\infty)$上的最大值.求\[\mathop {\lim }\limits_{n \to \infty } {\left( {\frac{{{M_n}}}{{n!}}} \right)^{{n^{ - \mu }}}}.\]

 

4. (10分)设$m$为正整数,方程$a\equiv b \mod m$定义为$m$能整除$a-b$.当$m$取何值时,以下线性方程组有整数解?

\[\left\{ \begin{array}{l}x + 2y - z \equiv 1\left( {\bmod m} \right),\\2x - 3y + z \equiv 4\left( {\bmod m} \right),\\4x + y - z \equiv 9\left( {\bmod m} \right).\end{array} \right.\]

 

5. (10分)设$A = \left( {\begin{array}{*{20}{c}}4&0\\0&1\end{array}} \right),B = \left( {\begin{array}{*{20}{c}}{\cos \theta }&{ - \sin \theta }\\{\sin \theta }&{\cos \theta }\end{array}} \right)\left( {\begin{array}{*{20}{c}}3&0\\0&{ - 2}\end{array}} \right){\left( {\begin{array}{*{20}{c}}{\cos \theta }&{ - \sin \theta }\\{\sin \theta }&{\cos \theta }\end{array}} \right)^{ - 1}}$,求以下矩阵的特征根: \[A + B,A \otimes \left( {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right) + \left( {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right) \otimes B,A \otimes B.\]

 

注:对$A = \left( {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}\\{{a_{21}}}&{{a_{22}}}\end{array}} \right),B = \left( {\begin{array}{*{20}{c}}{{b_{11}}}&{{b_{12}}}\\{{b_{21}}}&{{b_{22}}}\end{array}} \right)$,张量积定义为$A \otimes B = \left( {\begin{array}{*{20}{c}}{{a_{11}}B}&{{a_{12}}B}\\{{a_{21}}B}&{{a_{22}}B}\end{array}} \right)$.

 

6. (10分)证明以下矩阵组成的集合是实数域上的线性空间,求其维数及一组基,并证明行列式$\det X$是二次型,写出其对应的双线性型.

\[M = \left\{ {X = \left( {\begin{array}{*{20}{c}}{{x_0} + {x_3}}&{{x_1} - i{x_2}}\\{{x_1} + i{x_2}}&{{x_0} - {x_3}}\end{array}} \right):{x_0},{x_1},{x_2},{x_3} \in \mathbb{R} } \right\}.\]

 

7. (20分)设$\Omega$为含有$n$个元素的有限集合, $2^\Omega$为$\Omega$的幂集(即$\Omega$的所有子集构成的集合).对任意$A,B\in 2^\Omega$,定义数乘$0A=\emptyset$(空集), $1A=A$,加法$A+B=(A\cup B)\backslash (A\cap B)$(对称差).

 

(1) 证明$2^\Omega$关于以上数乘及加法为域$Z_2=\{0,1\}$ (注意在此域上$1+1=0$)上的线性空间,求其维数.

(2) 求$2^\Omega$的一维子空间个数.

(3) 取定非空$X\in 2^\Omega$,定义线性算子$T_X:2^\Omega\mapsto 2^\Omega$为$T_X A=A\cap X,A\in 2^\Omega$.求$T_X$的极小多项式,特征多项式,特征值和相应的特征子空间.

 

 

4 吉大考题

 

中国科学院大学

2016 年高校招生考试:数学(丙卷)

满分100分,考试时间120分钟

1. (15分)计算

 

(1) 求极限$\mathop {\lim }_{n \to \infty } \frac{{{1^{\alpha - 1}} + \cdots + {n^{\alpha - 1}}}}{{{n^\alpha }}} \quad {\alpha > 0} $.

 

(2) 已知$f'(a)$存在,$f(a)\neq0$,求$\mathop {\lim }_{n \to \infty } {\left( {\frac{{f\left( {a + \frac{1}{n}} \right)}}{{f\left( a \right)}}} \right)^n}$.

 

 

(3) 设$f:[0,1]\to \mathbb R$连续,求\[\mathop {\lim }\limits_{n \to \infty } \int_0^1 {\int_0^1 \cdots } \int_0^1 {f\left( {{{\left( {{x_1} \cdots {x_n}} \right)}^{1/n}}} \right)d{x_1}d{x_2} \cdots d{x_n}} .\]

 

2. (15分)设$\phi (x)>0,f(x)>0$都是$[a,b]$上连续函数,求\[\mathop {\lim }\limits_{n \to \infty } \sqrt[n]{{\int_a^b {\phi \left( x \right){{\left( {f\left( x \right)} \right)}^n}dx} }}.\]

 

3. (20分)证明$\binom n1 - \frac{1}{2}\binom n2 + \frac{1}{3} \binom n3 - \cdots + (-1)^{n-1}\frac1n\binom nn = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}$.

 

4. (10分)设$x,y$都是复数域上$n$阶方阵,定义$x^{(0)}=x,x^{(1)}=[x,y]\equiv xy-yx,x^{(j)}=[x^{(j-1)},y]$.证明

\[\sum\limits_{i = 0}^k {{y^i}x{y^{k - i}}} = \sum\limits_{j = 0}^k {\binom{k + 1}{j + 1} {y^{k - j}}{x^{\left( j \right)}}} .\]

 

5. (10分)给出平面中以下三条不同直线相交于一点的条件

\[ax+by+c=0,\quad bx+cy+a=0,\quad cx+ay+b=0.\]

求以下矩阵能对角化的条件:

\[\left( {\begin{array}{*{20}{c}}0&1&0\\0&0&1\\a&b&c\end{array}} \right).\]

 

6. (10分) 给出$M_2(\mathbb C)$中幂零矩阵所张成的线性空间的一组基.描述$M_n(\mathbb C)$中幂零矩阵所张成的线性空间.

 

7. (20分)证明$\cos x$是超越函数.

 

注:函数$f(x)$称为超越函数,如果不存在有限多个不全为零的$a_{pq},p,q=0,1,2,\cdots$,使得

\[\sum\limits_{p,q}a_{pq} x^p (f(x))^q=0,\quad \forall x\in \mathbb R.\]

 

5 大连理工考题

 

中国科学院大学

2016 年高校招生考试:数学(丁卷)

满分100分,考试时间120分钟

 

1. (15分)计算

 

(1) 求${\sqrt 2 ^{{{\sqrt 2 }^{{{\sqrt 2 }^ \cdots }}}}}$;

 

(2) 求$\mathop {\lim }\limits_{n \to \infty } \sqrt[n]{{\frac{{{n^n}}}{{n!}}}}$;

 

(3) 求不定积分$\int {\frac{{x\ln x}}{{{{\left( {1 + {x^2}} \right)}^2}}}dx}$.

 

2. (15分)设$\phi (x)>0,f(x)>0$都是$[a,b]$上连续函数,求

\[\mathop {\lim }\limits_{n \to \infty } \frac{{\int_a^b {\phi \left( x \right){{\left( {f\left( x \right)} \right)}^{n + 1}}dx} }}{{\int_a^b {\phi \left( x \right){{\left( {f\left( x \right)} \right)}^n}dx} }}.\]

 

3. (20分) 设$f(x)$为$[a,b]$上可微函数, $f(a)=f(b)=0$,但$f(x)$不恒等于零,则存在$\xi\in (a,b)$使得

\[\left| {f'\left( \xi \right)} \right| > \frac{4}{{{{\left( {b - a} \right)}^2}}}\int_a^b {f\left( x \right)dx} .\]

 

4. (10分)设$m$为正整数,方程$a\equiv b \mod m$定义为$m$能整除$a-b$.当$m$取何值时,以下线性方程组有整数解?

\[\left\{ \begin{array}{l}x \equiv 1\left( {\bmod \,2} \right),\\x \equiv 2\left( {\bmod \,3} \right),\\x\equiv 4\left( {\bmod \,5} \right).\end{array} \right.\]

 

5. (10分)证明代数数集合为可数集.

 

注:一个数称为代数数,如果它是某个系数为有理数的多项式的根.

 

6. (10分)设$n\geq2$,矩阵$A=(a_{ij})\in M_{n\times n}(\mathbb Z)$的每个元素要么是$-3$,要么是$4$,即$a_{ij}\in \{-3,4\}$. (1)设$S$是所有这些矩阵的和,求$S$及其秩$\mathrm{rank}\, S$; (2)证明行列式$|A^2|$是$7^{2n-2}$的倍数,即$7^{2n-2} |\, |A^2|$.

 

7. (20分)设$A = \left( {\begin{array}{*{20}{c}}a&1&0\\0&a&1\\0&0&a\end{array}} \right)\in M_{3\times 3}(\mathbb C)$,多项式$p(x)\in \mathbb C[x]$.

 

(1)证明: $p\left( A \right) = \left( {\begin{array}{*{20}{c}}{p\left( a \right)}&{p'\left( a \right)}&{p''\left( a \right)/2}\\0&{p\left( a \right)}&{p'\left( a \right)}\\0&0&{p\left( a \right)}\end{array}} \right)$. \quad (2)求$e^A$.

 

 

 

6 中科大考题

 

证明$AB$和$BA$有相同的特征多项式.

 

7 山大考题

 

 

中国科学院大学

2016 年高校招生考试:数学(X卷)

满分100分,考试时间120分钟

 

1. (15分)计算

 

(1) 求$\mathop {\lim }_{x \to 0} \frac{{\sqrt {1 + \tan x} - \sqrt {1 + \sin x} }}{{{x^3}}}$;

 

(2) 求$f(x)=x^{x^x}$的导数;

 

(3) 求\[\mathop {\lim }\limits_{n \to \infty } \int_0^1 {\int_0^1 \cdots } \int_0^1 {\frac{{x_1^2 + x_1^2 + \cdots + x_n^2}}{{{x_1} + {x_2} + \cdots + {x_n}}}d{x_1}d{x_2}d{x_n}} .\]

 

2. (15分)已知$f\left( x \right) = \prod_{i = 1}^k {\left( {x - {a_i}} \right)} $,且\[ - \frac{{f'\left( x \right)}}{{f\left( x \right)}} = {c_0} + {c_1}x + {c_2}{x^2} + \cdots + {c_n}{x^n} + \cdots ,\]求$\mathop {\lim }\limits_{n \to \infty } \frac{{{c_n}}}{{{c_{n - 1}}}}$和$\mathop {\lim }\limits_{n \to \infty } \sqrt[n]{{{c_n}}}$.

 

3. (20分) $a,b$为实数, $x^3+abx+b$在复数域上有重根,则$a,b$应满足什么条件?

 

4. (10分)求\[{\left( {\begin{array}{*{20}{c}}{{e^{i\theta }}}&{2i\sin \alpha }\\0&{{e^{i\theta }}}\end{array}} \right)^n}.\]

 

 

8 厦大考题

 

1. $A,B$特征值不同, $f_A,f_B$为其特征多项式.

 

(1) 存在$g(\lambda),h(\lambda)$使得\[g(B)f_A(B)=I,h(A)g_B(A)=I.\]

 

(2) $AX-XB=0$只有零解;

 

(3) $AX-XB=C$有唯一解.

 

2. 设$f(x)=\frac1{1-x-x^2}$,证明$\sum_{n=1}^\infty\frac{n!}{f^{(n)}(0)}$收敛,其中$f^{(n)}(0)$表示$f(x)$在$0$点的$n$阶导数.

Avatar_small
New India Assurance 说:
2022年8月06日 20:28

New India Assurance corporation limited does offer insurance plans for vehicles which include commercial vehicles and private vehicles. The insurance policy does protect them from third-party liabilities and unwanted expenses which might arise through accidental damage or due to any kind of loss to the vehicle. New India Assurance Renewal Having proper insurance will cover your entire vehicle damage as per their insured value, as well having regular insurance will help you have good value as it gets changed every year with a calculated percentage.

Avatar_small
MBSE Question Paper 说:
2022年9月06日 04:17

Mizoram Board HSLC Previous Question Paper 2023 are very important for the Preparation of Public Exam of MBSE for the Students. HSLC Students of can easily get their Latest and most valuable Mock Test Paper from this website. MBSE Question Paper Students only have to Download the Meghalaya Board HSLC Mock Test Paper 2023 for all the important subjects are available Including the English, Mathematics, Social studies, Hindi, Urdu etc. Mizoram Board HSLC Model Paper 2023 has announced State Governmental Board of Education.


登录 *


loading captcha image...
(输入验证码)
or Ctrl+Enter