2017考研题解 - Eufisky - The lost book
中科院数学系统院2016年夏令营试题
关于中科院数学系统院考研事宜(续)

2017考研题解

Eufisky posted @ 2016年12月25日 18:37 in 考研 with tags 考研 , 969 阅读

假设$\displaystyle x_0=1,x_n=x_{n-1}+\cos x_{n-1}(n=1,2,\cdots )$,证明:当$x\rightarrow \infty $时, $\displaystyle x_n-\frac{\pi }{2}=o\left(\frac{1}{n^n}\right)$.


证.先证$1\leq x_n<\frac\pi /2$,得到$x_n-x_{n-1}>0$,由单调有界定理可知$x_n$极限存在且$\lim_{n\to\infty}=\frac\pi2$.下面用归纳法证明$\lim_{n\rightarrow\infty}n^n\left(x_n-\frac{\pi}{2}\right)=0$.假设

$$\lim_{n\rightarrow\infty}n^n\left(x_n-\frac{\pi}{2}\right)=0.$$
我们有
\begin{align*}\lim_{n\rightarrow\infty}\left(n+1\right)^{n+1}\left(x_{n+1}-\frac{\pi}{2}\right)&=\lim_{n\rightarrow\infty}\left(n+1\right)^{n+1}\left(x_n+\cos x_n-\frac{\pi}{2}\right)\\&=\lim_{n\rightarrow\infty}\left(n+1\right)^{n+1}\left(x_n+\sin\left(\frac{\pi}{2}-x_n\right)-\frac{\pi}{2}\right)\\&=\lim_{n\rightarrow\infty}\left(n+1\right)^{n+1}\left(x_n+\left(\frac{\pi}{2}-x_n\right)-\frac{1}{6}\left(\frac{\pi}{2}-x_n\right)^3-\frac{\pi}{2}\right)\\&=-\frac{1}{6}\lim_{n\rightarrow\infty}\left(n+1\right)^{n+1}\left(\frac{\pi}{2}-x_n\right)^3\\&=-\frac{1}{6}\lim_{n\rightarrow\infty}\frac{\left(n+1\right)^{n+1}}{n^{3n}}\left[n^n\left(x_n-\frac{\pi}{2}\right)\right]^3=0.\end{align*}

TangSong:令$y_n=\frac\pi2-x_n$,得到$y_n=y_{n-1}-\sin y_{n-1}$.可以证明$$\lim_{n\rightarrow\infty}\frac{y_{n+1}}{y_{n}^{3}}=\frac{1}{6}.$$因此当$n>N$时,我们有$$\frac{y_{n+1}}{y_{n}^{3}}<\frac{1}{2}.$$因此$$0<y_n<\frac{1}{2}y_{n-1}^{3}<\left(\frac{1}{2}\right)^{1+3}y_{n-2}^{3^2}<\cdots <\left(\frac{1}{2}\right)^{1+3+\cdots +3^{n-N-2}}y_{N+1}^{3^{n-N-1}},$$

即$$0<y_n<\left(\frac{1}{2}\right)^{\left(3^{n-N-1}-1\right)/2}y_{N+1}^{3^{n-N-1}}.$$


设$$\left({\begin{array}{*{20}{c}}{{x_{3n}}}\\{{x_{3n + 1}}}\\{{x_{3n + 2}}}\end{array}}\right)=\left({\begin{array}{*{20}{c}}3&{ - 2}&1\\4&{ - 1}&0\\4&{ - 3}&2\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{x_{3n - 3}}}\\{{x_{3n - 2}}}\\{{x_{3n - 1}}}\end{array}} \right).$$给定初值$a_0=5,a_1=7,a_2=8$,求$x_n$的通项.


解.我们先求矩阵的Jordan标准型,得到$$M = \left( {\begin{array}{*{20}{c}}3&{ - 2}&1\\4&{ - 1}&0\\4&{ - 3}&2\end{array}} \right) = SJ{S^{ - 1}} = \left( {\begin{array}{*{20}{c}}1&{1/2}&3\\2&0&4\\2&0&5\end{array}} \right)\left( {\begin{array}{*{20}{c}}1&1&0\\0&1&0\\0&0&2\end{array}} \right)\left( {\begin{array}{*{20}{c}}0&{5/2}&{ - 2}\\2&1&{ - 2}\\0&{ - 1}&1\end{array}} \right).$$因此

\begin{align*}\left( {\begin{array}{*{20}{c}}{{x_{3n - 3}}}\\{{x_{3n - 2}}}\\{{x_{3n - 1}}}\end{array}} \right) &= {\left( {\begin{array}{*{20}{c}}3&{ - 2}&1\\4&{ - 1}&0\\4&{ - 3}&2\end{array}} \right)^{n - 1}}\left( {\begin{array}{*{20}{c}}{{x_0}}\\{{x_1}}\\{{x_2}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}1&{1/2}&3\\2&0&4\\2&0&5\end{array}} \right){\left( {\begin{array}{*{20}{c}}1&1&0\\0&1&0\\0&0&2\end{array}} \right)^{n - 1}}\left( {\begin{array}{*{20}{c}}0&{5/2}&{ - 2}\\2&1&{ - 2}\\0&{ - 1}&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}5\\7\\8\end{array}} \right)\\&= \left( {\begin{array}{*{20}{c}}1&{1/2}&3\\2&0&4\\2&0&5\end{array}} \right)\left( {\begin{array}{*{20}{c}}1&{n - 1}&0\\0&1&0\\0&0&{{2^{n - 1}}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}0&{5/2}&{ - 2}\\2&1&{ - 2}\\0&{ - 1}&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}5\\7\\8\end{array}} \right) = \left( {\begin{array}{*{20}{c}}{n + 1 + 3 \times {2^{n - 1}}}\\{2n + 1 + {2^{n + 1}}}\\{2n + 1 + 5 \times {2^{n - 1}}}\end{array}} \right).\end{align*}

空间中四点$O,A,B,C$使得\[\angle AOB=\frac{\pi}{2},\angle BOC=\frac{\pi}{3},\angle COA=\frac{\pi}{4}\]
设$AOB$决定的平面为$\pi_1$,$BOC$决定的平面为$\pi_2$,求$\pi_1,\pi_2$二面角.求出二面角的余弦值即可.

解.


设线性空间$V$, $\delta$是线性映射,其中向量$\beta$是$\delta$以特征值$\lambda$的特征向量.求证:对任意不全为零的$k_i(1\leq i \leq n)$,都存一组$V$的基使得$\beta$可以表示为该组基以$k_i$的线性组合.
 

证明存在矩阵$A$使得, $Aa_1=b_1,Aa_2=b_2$,其中$a_1\neq a_2,b_1\neq b_2$且$|A|=1$.

 
Avatar_small
TS SSC Question Pape 说:
2022年8月17日 19:01

TS SSC Question Paper 2023 Download Telangana 10th Class Exam New Model Paper 2023, Telangana TS SSC 10th Class Question Paper 2023 Download official website bsetelangana.org, TS 10th class exam final public Previous Question Paper 2023, TS SSC Question Paper 2023 Telangana Board of Secondary Education has been released their academic year 2023 Previous Question Paper on their official website bsetelangana.org in the month of November 2023.


登录 *


loading captcha image...
(输入验证码)
or Ctrl+Enter