一个很火的积分题 - Eufisky - The lost book
一个与多项式分拆有关的级数题
一系列类似积分相等的证明

一个很火的积分题

Eufisky posted @ 2014年9月04日 02:58 in 数学分析 with tags 积分计算 , 1462 阅读

求解\[\displaystyle \int_0^1 \frac{\log^2(1-x)\log(x)}{x}dx=-\frac{\pi^4}{180}.\]

解.$For $|z|<1$ we have that

\[S=\sum\limits_{j=1}^{+\infty }{H_{j}z^{j}}=-\frac{\ln \left( 1-z \right)}{1-z}.\]
Expanding the logarithm and the geometric series
\begin{align*}S&=-\frac{\ln \left( 1-z \right)}{1-z}\\&=\frac{1}{1-z}\sum\limits_{j=1}^{+\infty }{\frac{z^{j}}{j}}=\frac{1}{1-z}\left( z+\frac{z^{2}}{2}+\frac{z^{3}}{3}+\frac{z^{4}}{4}+... \right)=\left( 1+z+z^{2}+... \right)\left( z+\frac{z^{2}}{2}+\frac{z^{3}}{3}+\frac{z^{4}}{4}+... \right)\\&=\left( z+\frac{z^{2}}{2}+\frac{z^{3}}{3}+\frac{z^{4}}{4}+... \right)+z\left( z+\frac{z^{2}}{2}+\frac{z^{3}}{3}+\frac{z^{4}}{4}+... \right)+z^{2}\left( z+\frac{z^{2}}{2}+\frac{z^{3}}{3}+\frac{z^{4}}{4}+... \right)+...\\&=\left( z+\frac{z^{2}}{2}+\frac{z^{3}}{3}+\frac{z^{4}}{4}+... \right)+\left( z^{2}+\frac{z^{3}}{2}+\frac{z^{4}}{3}+\frac{z^{5}}{4}+... \right)+\left( z^{3}+\frac{z^{4}}{2}+\frac{z^{5}}{3}+\frac{z^{6}}{4}+.. \right)+...\\&=z+\left( 1+\frac{1}{2} \right)z^{2}+\left( 1+\frac{1}{2}+\frac{1}{3} \right)z^{3}+\left( 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4} \right)z^{4}+\left( 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5} \right)z^{5}+...\\&=H_{1}z+H_{2}z^{2}+H_{3}z^{3}+H_{4}z^{4}+H_{5}z^{5}+...=\sum\limits_{j=1}^{+\infty }{H_{j}z^{j}}.\end{align*}
Aso we know that
\[H_{n}=1+\frac{1}{2}+...+\frac{1}{n}=\int\limits_{0}^{1}{\left( 1+x+...+x^{n-1} \right)dx}=\int\limits_{0}^{1}{\frac{1-x^{n}}{1-x}dx}\]
with $\displaystyle H_0=0$ by convention. Consider the polylogarithm function,We know that
\[\frac{d}{dx}Li_{n}\left( x \right)=\frac{Li_{n-1}\left( x \right)}{x}.\]
Then
\begin{align*}I&=\int\limits_{0}^{1}{\ln x\ln ^{2}\left( 1-x \right)\frac{dx}{x}}=\int\limits_{0}^{1}{\frac{\ln \left( 1-x \right)}{1-x}\ln ^{2}xdx}=-\int\limits_{0}^{1}{\sum\limits_{j=1}^{+\infty }{H_{j}x^{j}}\ln ^{2}xdx}\\&=-\sum\limits_{j=1}^{+\infty }{H_{j}\int\limits_{0}^{1}{x^{j}\ln ^{2}xdx}}=-2\sum\limits_{j=1}^{+\infty }{\frac{H_{j}}{\left( j+1 \right)^{3}}}\end{align*}
as
\[K\left( j \right)=\int\limits_{0}^{1}{x^{j}dx}=\left( \frac{x^{j+1}}{j+1} \right)\left| _{0}^{1} \right.=\frac{1}{j+1}\Rightarrow K''\left( j \right)=\int\limits_{0}^{1}{x^{j}\ln ^{2}xdx}=-\frac{1}{\left( j+1 \right)^{2}}=\frac{2}{\left( j+1 \right)^{3}}.\]
Denote $S$ the sum$\displaystyle S=\sum\limits_{j=1}^{+\infty }{\frac{H_{j}}{\left( j+1 \right)^{3}}}.$
\begin{align*}S&=\sum\limits_{j=1}^{+\infty }{\frac{H_{j}}{\left( j+1 \right)^{3}}}=\sum\limits_{j=1}^{+\infty }{\left( \frac{\frac{1}{j+1}-\frac{1}{j+1}+H_{j}}{\left( j+1 \right)^{3}} \right)}\\&=\sum\limits_{j=1}^{+\infty }{\left( \frac{H_{j+1}-\frac{1}{j+1}}{\left( j+1 \right)^{3}} \right)}=\sum\limits_{j=1}^{+\infty }{\left( \frac{H_{j+1}}{\left( j+1 \right)^{3}}-\frac{1}{\left( j+1 \right)^{4}} \right)}\\&=\sum\limits_{j=0}^{+\infty }{\left( \frac{H_{j+1}}{\left( j+1 \right)^{3}}-\frac{1}{\left( j+1 \right)^{4}} \right)}=\sum\limits_{j=1}^{+\infty }{\left( \frac{H_{j}}{j^{3}}-\frac{1}{j^{4}} \right)}=-\zeta \left( 4 \right)+\sum\limits_{j=1}^{+\infty }{\frac{H_{j}}{j^{3}}}\\&=-\zeta \left( 4 \right)+\sum\limits_{j=1}^{+\infty }{\left( \int\limits_{0}^{1}{\frac{1-x^{j}}{1-x}}\frac{1}{j^{3}}dx \right)}=-\zeta \left( 4 \right)+\int\limits_{0}^{1}{\frac{1}{1-x}\sum\limits_{j=1}^{+\infty }{\left( \frac{1-x^{j}}{j^{3}} \right)}}dx\\&=-\zeta \left( 4 \right)+\int\limits_{0}^{1}{\frac{1}{1-x}\left( \zeta \left( 3 \right)-\sum\limits_{j=1}^{+\infty }{\frac{x^{j}}{j^{3}}} \right)}dx=-\zeta \left( 4 \right)+\int\limits_{0}^{1}{\frac{1}{1-x}\left( \zeta \left( 3 \right)-Li_{3}\left( x \right) \right)}dx.\end{align*}
Using integration by parts
Let $\displaystyle u=\zeta \left( 3 \right)-Li_{3}\left( x \right)$ and $\displaystyle dv=\frac{dx}{1?x}$.Then$\displaystyle du=-\frac{Li_{2}\left( x \right)}{x}$and$\displaystyle v=-\log \left| 1-x \right|$.So, the sum is equal to
\begin{align*}S&=-\zeta \left( 4 \right)+\left( Li_{3}\left( x \right)-\zeta \left( 3 \right) \right)\log \left| 1-x \right|\left| _{0}^{1} \right.-\int\limits_{0}^{1}{\log \left( 1-x \right)\frac{Li_{2}\left( x \right)}{x}}dx\\&=-\zeta \left( 4 \right)-\int\limits_{0}^{1}{Li_{2}\left( x \right)\frac{\log \left( 1-x \right)}{x}}dx.\end{align*}
Making the following change of variable
\begin{align*}u&=Li_{2}\left( x \right)\Rightarrow du=-\frac{\log \left( 1-x \right)}{x}dx\\S&=-\zeta \left( 4 \right)+\int\limits_{0}^{1}{Li_{2}\left( x \right)\left( Li_{2}\left( x \right) \right)^{'}}dx\\&=-\zeta \left( 4 \right)+\frac{1}{2}\left( Li_{2}^{2}\left( x \right) \right)\left| _{0}^{1} \right.=-\zeta \left( 4 \right)+\frac{1}{2}\left( Li_{2}^{2}\left( 1 \right)-Li_{2}^{2}\left( 0 \right) \right).\end{align*}
where $\displaystyle Li_{2}\left( x \right)=\sum\limits_{j=1}^{+\infty }{\frac{x^{j}}{j^{2}}}.$Then
\[S=-\zeta \left( 4 \right)+\frac{1}{2}\zeta ^{2}\left( 2 \right)=\frac{\pi ^{4}}{72}-\frac{\pi ^{4}}{90}=\frac{\pi ^{4}}{18}\left( \frac{1}{4}-\frac{1}{5} \right)=\frac{\pi ^{4}}{18}\left( \frac{1}{20} \right)=\frac{\pi ^{4}}{360}.\]
Finally we conclude
\[I=-2\sum\limits_{j=1}^{+\infty }{\frac{H_{j}}{\left( j+1 \right)^{3}}}=-2\left( -\zeta \left( 4 \right)+\frac{1}{2}\zeta ^{2}\left( 2 \right) \right)=-2\cdot \frac{\pi ^{4}}{360}=-\frac{\pi ^{4}}{180}.\]
Avatar_small
2nd PUC Blueprint 20 说:
2022年8月17日 00:28

Karnataka Download the 2nd PUC Blueprint 2022 Karnataka Board as per which the assessment was New Marking Scheme to be led from 2022. 2nd PUC Blueprint 2022 Peruse on to discover more about the 2nd PUC Blueprint 2022 The state board had Download the Karnataka 2nd PUC last, most important test Blueprint on February 2022.Karnataka Download the 2nd PUC Blueprint 2022 Karnataka Board as per which the assessment was New Marking Scheme to be led from 2022.


登录 *


loading captcha image...
(输入验证码)
or Ctrl+Enter