傅里叶变换求积分函数 - Eufisky - The lost book
积分题1之来自G.Han的一道积分题
sinn/n和cosn/n类型的若干问题

傅里叶变换求积分函数

Eufisky posted @ 2014年4月07日 03:38 in 数学分析 with tags 傅里叶变换 , 1435 阅读
来自刚哥的虐心的积分题:
\begin{align*}&\int_0^\infty  {\frac{{\cos tx}}{{1 + {t^2}}}} dt;\\&\int_0^\infty  {\frac{{\left( {{u^2} + 2} \right)\cos ux}}{{{u^4} + 4}}du} .\end{align*}
解:事实上,由Fourier变换公式
\begin{align*}{e^{ - x}} &= \frac{2}{\pi }\int_0^\infty  {cos\left( {\lambda x} \right)d\lambda \int_0^\infty  {{e^{ - u}}} cos\left( {\lambda u} \right)} du = \frac{2}{\pi }\int_0^\infty  {\frac{{\cos \lambda x}}{{{\lambda ^2} + 1}}d\lambda } ;\\{e^{ - x}}\cos x &= \frac{2}{\pi }\int_0^\infty  {\cos \left( {xu} \right)du} \int_0^\infty  {{e^{ - t}}\cos t\cos \left( {ut} \right)dt}  = \frac{2}{\pi }\int_0^\infty  {\frac{{\left( {{u^2} + 2} \right)\cos ux}}{{{u^4} + 4}}du}.\end{align*}
我们得到
\begin{align*}\int_0^\infty  {\frac{{\cos \lambda x}}{{{\lambda ^2} + 1}}d\lambda }  &= \frac{\pi }{2}{e^{ - x}};\\\int_0^\infty  {\frac{{\left( {{u^2} + 2} \right)\cos ux}}{{{u^4} + 4}}du}  &= \frac{\pi }{2}{e^{ - x}}\cos x.\end{align*}
一般地,找到以下结论
\begin{align*}\int_0^\infty  {\frac{{\cos xu}}{{{\beta ^2} + {u^2}}}du}  &= \frac{\pi }{{2\beta }}{e^{ - \beta x}} \qquad x > 0,\beta  > 0;\\\int_0^\infty  {\frac{{u\sin xu}}{{{\beta ^2} + {u^2}}}du}  &= \frac{\pi }{2}{e^{ - \beta x}}\qquad x > 0,\beta  > 0;\\\int_0^\infty  {\frac{{{x^{\mu  - 1}}\sin \left( {ax} \right)}}{{{x^2} + 1}}dx}  &=  - {a^{2 - \mu }}\mathbf{\Gamma} \left( {\mu  - 2} \right){}_1{F_2}\left( {1;\frac{{3 - \mu }}{2},\frac{{4 - \mu }}{2};\frac{{{a^2}}}{4}} \right)\mathrm{sign}\left( a \right)\sin \frac{{\mu \pi }}{2}\\&+ \frac{\pi }{2}\sec \frac{{\mu \pi }}{2}\sinh \left( a \right)\qquad{\mathop{\rm Im}\nolimits} a = 0, - 1 < \mathrm{Re}\mu  < 3;\\\int_0^\infty  {\frac{{{x^{\mu  - 1}}\cos \left( {ax} \right)}}{{{x^2} + 1}}dx}  &= \frac{\pi }{{2\sin \frac{{\mu \pi }}{2}}}\cosh a + \frac{1}{2}\cos \frac{{\mu \pi }}{2}\mathbf{\Gamma} \left( \mu  \right)\\&\left[ {{e^{ - a + i\pi \left( {1 - \mu } \right)}}\gamma \left( {1 - \mu , - a} \right) - {e^a}\gamma \left( {1 - \mu ,a} \right)} \right]\qquad a > 0,0 < \mathrm{Re}\mu  < 3;\\\int_0^\infty  {\frac{{{x^{2\mu  + 1}}\sin \left( {ax} \right)}}{{{x^2} + {b^2}}}dx}  &=  - \frac{\pi }{{2\cos \left( {\mu \pi } \right)}}{b^{2\mu }}\mathrm{sinh}\left( {ab} \right) + \frac{{\sin \left( {\mu \pi } \right)}}{{2{a^{2\mu }}}}\mathbf{\Gamma} \left( {2\mu } \right)\\&\left[ {{}_1{F_1}\left( {1;1 - 2\mu ;ab} \right) + {}_1{F_1}\left( {1;1 - 2\mu ; - ab} \right)} \right] \qquad a > 0, - \frac{3}{2} < \mathrm{Re}\mu  < \frac{1}{2};\\\int_0^\infty  {\frac{{{x^{2\mu  + 1}}\cos \left( {ax} \right)}}{{{x^2} + {b^2}}}dx}  &=  - \frac{\pi }{{2\sin \left[ {\left( {\mu  + \frac{1}{2}} \right)\pi } \right]}}{b^{2\mu  + 1}}\cosh \left( {ab} \right) + \frac{{\cos \left[ {\left( {\mu  + \frac{1}{2}} \right)\pi } \right]}}{{2{a^{2\mu  + 1}}}}\mathbf{\Gamma} \left( {2\mu  + 1} \right)\\&\left[ {{}_1{F_1}\left( {1; - 2\mu ;ab} \right) + {}_1{F_1}\left( {1; - 2\mu ; - ab} \right)} \right] \qquad a > 0, - 1 < \mathrm{Re}\mu  < \frac{1}{2}.\end{align*}

 

Avatar_small
JKBOSE 12th Question 说:
2022年8月17日 23:01

JKBOSE 12th New Question Paper 2023, Jammu and Kashmir 12th Board exam performance as Pathway for all candidates to appear in the Board Exam. Board exams either 10th or 12th class exams are very important in a students life. JKBOSE 12th Question Paper 2023 12th class Board exams are mandatory for every student who is studying.


登录 *


loading captcha image...
(输入验证码)
or Ctrl+Enter