Loading [MathJax]/jax/output/HTML-CSS/jax.js
Eufisky - The lost book

积分题1之来自G.Han的一道积分题

今天,收到G.Han的提问,第一个是计算积分

0lnx(x2+1)ndx顿时不明觉厉,然后在宝典《Table of Integrals, Series, and Products》上找到一个更一般的结果:

0lnxdx(a2+b2x2)n=Γ(n12)π4(n1)!a2n1b[2lna2bγψ(n12)]a>0,b>0.

其中γ为Euler-Mascheroni常数,ψ(x)为Digamma 函数,有:

ψ(n+12)=γ2ln2+nk=122k1.ψ(12)=γ2ln2

解:

In=+0lnx(x2+1)ndx=+01(x2+1)nd(xlnxx)=[xlnxx(x2+1)n]+0+2n+0x2lnxx2(x2+1)n+1dx=2n+0(x2+1)lnxlnxx2(x2+1)n+1dx=2n+0lnx(x2+1)ndx2n+0lnx(x2+1)n+1dx2n+0x2(x2+1)n+1dx
2nIn+1=(2n1)In2n+0x2(x2+1)n+1dx=(2n1)In2n+0x2+11(x2+1)n+1dx=(2n1)In2n+01(x2+1)ndx+2n+01(x2+1)n+1dx.
2nIn+1=(2n1)In2n+01(x2+1)ndx+2n+01(x2+1)n+1dx.
先证明一个引理
+01(x2+1)ndx=12B(n12,12)=π2Γ(n12)(n1)!={π2(n1)![π.(2n3)!!2n1]=(2n3)!!2n(n1)!πn2π2n=1.
引理的证明
+01(x2+1)ndxt=1x2+1__01tnd1t1=1210tn32(1t)12dt=12B(n12,12)=π2Γ(n12)(n1)!={π2(n1)![π.(2n3)!!2n1]=(2n3)!!2n(n1)!πn2π2n=1.
回到原题
2nIn+1=(2n1)In2n+01(x2+1)ndx+2n+01(x2+1)n+1dx=(2n1)In2n(2n3)!!2n(n1)!π+2n(2n1)!!2n+1n!π=(2n1)Inπ(n1)!(2n3)!!2n(2n)!!(2n1)!!In+1=(2n2)!!(2n3)!!Inπ212n1(2n2)!!(2n3)!!In=2!!1!!I2n1k=2π2k1=π2n1k=112k1In={0n=1π2(2n3)!!(2n2)!!n1k=112k1n2.
 
 

第二题是个重要的Steffensen积分不等式

f,gR[a,b],且f[a,b]单减,0<g(x)1,求证:

bbλf(x)dxbaf(x)g(x)dxa+λaf(x)dx.

其中λ=bag(x)dx.

证:先证明右边不等式

a+λaf(x)dxbaf(x)g(x)dx=a+λaf(x)[1g(x)]dxba+λf(x)g(x)dxf(a+λ)a+λa[1g(x)]dx=f(a+λ)(λa+λag(x)dx)ba+λf(x)g(x)dx=f(a+λ)ba+λg(x)dxba+λf(x)g(x)dx=ba+λ[f(a+λ)f(x)]g(x)dx0

左边不等式同理可证.

 

LaTeX公式测试

a2+b2=c2.

nk=1=lnn+γ+cnn=1=π26