积分题1之来自G.Han的一道积分题
今天,收到G.Han的提问,第一个是计算积分
∫∞0lnx(x2+1)ndx顿时不明觉厉,然后在宝典《Table of Integrals, Series, and Products》上找到一个更一般的结果:
∫∞0lnxdx(a2+b2x2)n=Γ(n−12)√π4(n−1)!a2n−1b[2lna2b−γ−ψ(n−12)]a>0,b>0.
其中γ为Euler-Mascheroni常数,ψ(x)为Digamma 函数,有:
ψ(n+12)=−γ−2ln2+n∑k=122k−1.ψ(12)=−γ−2ln2
解:
In=∫+∞0lnx(x2+1)ndx=∫+∞01(x2+1)nd(xlnx−x)=[xlnx−x(x2+1)n]+∞0+2n∫+∞0x2lnx−x2(x2+1)n+1dx=2n∫+∞0(x2+1)lnx−lnx−x2(x2+1)n+1dx=2n∫+∞0lnx(x2+1)ndx−2n∫+∞0lnx(x2+1)n+1dx−2n∫+∞0x2(x2+1)n+1dx
⇒2nIn+1=(2n−1)In−2n∫+∞0x2(x2+1)n+1dx=(2n−1)In−2n∫+∞0x2+1−1(x2+1)n+1dx=(2n−1)In−2n∫+∞01(x2+1)ndx+2n∫+∞01(x2+1)n+1dx.
即
2nIn+1=(2n−1)In−2n∫+∞01(x2+1)ndx+2n∫+∞01(x2+1)n+1dx.
先证明一个引理
∫+∞01(x2+1)ndx=12B(n−12,12)=√π2Γ(n−12)(n−1)!={√π2(n−1)![√π.(2n−3)!!2n−1]=(2n−3)!!2n(n−1)!πn≥2π2n=1.
引理的证明
∫+∞01(x2+1)ndx令t=1x2+1__∫01tnd√1t−1=12∫10tn−32(1−t)−12dt=12B(n−12,12)=√π2Γ(n−12)(n−1)!={√π2(n−1)![√π.(2n−3)!!2n−1]=(2n−3)!!2n(n−1)!πn≥2π2n=1.
回到原题
2nIn+1=(2n−1)In−2n∫+∞01(x2+1)ndx+2n∫+∞01(x2+1)n+1dx=(2n−1)In−2n(2n−3)!!2n(n−1)!π+2n(2n−1)!!2n+1n!π=(2n−1)In−π(n−1)!(2n−3)!!2n⇒(2n)!!(2n−1)!!In+1=(2n−2)!!(2n−3)!!In−π2⋅12n−1⇒(2n−2)!!(2n−3)!!In=2!!1!!I2−n−1∑k=2π2k−1=−π2n−1∑k=112k−1⇒In={0n=1−π2(2n−3)!!(2n−2)!!n−1∑k=112k−1n≥2.
第二题是个重要的Steffensen积分不等式
设f,g∈R[a,b],且f在[a,b]单减,0<g(x)≤1,求证:
∫bb−λf(x)dx≤∫baf(x)g(x)dx≤∫a+λaf(x)dx.
其中λ=∫bag(x)dx.
证:先证明右边不等式
∫a+λaf(x)dx−∫baf(x)g(x)dx=∫a+λaf(x)[1−g(x)]dx−∫ba+λf(x)g(x)dx≥f(a+λ)∫a+λa[1−g(x)]dx=f(a+λ)(λ−∫a+λag(x)dx)−∫ba+λf(x)g(x)dx=f(a+λ)∫ba+λg(x)dx−∫ba+λf(x)g(x)dx=∫ba+λ[f(a+λ)−f(x)]g(x)dx≥0
左边不等式同理可证.
LaTeX公式测试
a2+b2=c2.
n∑k=1=lnn+γ+cn∞∑n=1=π26