2017考研题解

$$\lim_{n\rightarrow\infty}n^n\left(x_n-\frac{\pi}{2}\right)=0.$$

\begin{align*}\lim_{n\rightarrow\infty}\left(n+1\right)^{n+1}\left(x_{n+1}-\frac{\pi}{2}\right)&=\lim_{n\rightarrow\infty}\left(n+1\right)^{n+1}\left(x_n+\cos x_n-\frac{\pi}{2}\right)\\&=\lim_{n\rightarrow\infty}\left(n+1\right)^{n+1}\left(x_n+\sin\left(\frac{\pi}{2}-x_n\right)-\frac{\pi}{2}\right)\\&=\lim_{n\rightarrow\infty}\left(n+1\right)^{n+1}\left(x_n+\left(\frac{\pi}{2}-x_n\right)-\frac{1}{6}\left(\frac{\pi}{2}-x_n\right)^3-\frac{\pi}{2}\right)\\&=-\frac{1}{6}\lim_{n\rightarrow\infty}\left(n+1\right)^{n+1}\left(\frac{\pi}{2}-x_n\right)^3\\&=-\frac{1}{6}\lim_{n\rightarrow\infty}\frac{\left(n+1\right)^{n+1}}{n^{3n}}\left[n^n\left(x_n-\frac{\pi}{2}\right)\right]^3=0.\end{align*}

TangSong：令$y_n=\frac\pi2-x_n$,得到$y_n=y_{n-1}-\sin y_{n-1}$.可以证明$$\lim_{n\rightarrow\infty}\frac{y_{n+1}}{y_{n}^{3}}=\frac{1}{6}.$$因此当$n>N$时,我们有$$\frac{y_{n+1}}{y_{n}^{3}}<\frac{1}{2}.$$因此$$0<y_n<\frac{1}{2}y_{n-1}^{3}<\left(\frac{1}{2}\right)^{1+3}y_{n-2}^{3^2}<\cdots <\left(\frac{1}{2}\right)^{1+3+\cdots +3^{n-N-2}}y_{N+1}^{3^{n-N-1}},$$

\begin{align*}\left( {\begin{array}{*{20}{c}}{{x_{3n - 3}}}\\{{x_{3n - 2}}}\\{{x_{3n - 1}}}\end{array}} \right) &= {\left( {\begin{array}{*{20}{c}}3&{ - 2}&1\\4&{ - 1}&0\\4&{ - 3}&2\end{array}} \right)^{n - 1}}\left( {\begin{array}{*{20}{c}}{{x_0}}\\{{x_1}}\\{{x_2}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}1&{1/2}&3\\2&0&4\\2&0&5\end{array}} \right){\left( {\begin{array}{*{20}{c}}1&1&0\\0&1&0\\0&0&2\end{array}} \right)^{n - 1}}\left( {\begin{array}{*{20}{c}}0&{5/2}&{ - 2}\\2&1&{ - 2}\\0&{ - 1}&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}5\\7\\8\end{array}} \right)\\&= \left( {\begin{array}{*{20}{c}}1&{1/2}&3\\2&0&4\\2&0&5\end{array}} \right)\left( {\begin{array}{*{20}{c}}1&{n - 1}&0\\0&1&0\\0&0&{{2^{n - 1}}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}0&{5/2}&{ - 2}\\2&1&{ - 2}\\0&{ - 1}&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}5\\7\\8\end{array}} \right) = \left( {\begin{array}{*{20}{c}}{n + 1 + 3 \times {2^{n - 1}}}\\{2n + 1 + {2^{n + 1}}}\\{2n + 1 + 5 \times {2^{n - 1}}}\end{array}} \right).\end{align*}

中科院数学系统院2016年夏令营试题

2016 年大学生数学夏令营考试试卷

1. 本试卷满分为100 分，全部考试时间总计120 分钟。

2. 所有答案必须写在答题纸上，写在试题纸上或草稿纸上一律无效。

1.(10分)确定矩阵分别为

$\left( {\begin{array}{*{20}{c}}1&2&3\\2&0&{ - 1}\\3&{ - 1}&3\end{array}} \right),\left( {\begin{array}{*{20}{c}}1&3&0\\3&1&1\\0&1&5\end{array}} \right) \text{的二次型在下列域上是否等价：}$

(a)实数域.(b)有理数域?

2.(10分)设$W_1,W_2$是$V$的子空间,如果$W_1\cup W_2=V$.证明：或者$V=W_1$,或者$V=W_2$.

3.(15分)设$V$是$n$维实向量空间, $\varphi:V\to V$是线性映射.

$\chi_\varphi(t)=(t-\lambda_1)\cdots(t-\lambda_n),(\lambda_i\in \mathbb C)$是$\varphi$的特征多项式.

4.(15分) 设$(V,<,>)$是$n$维欧氏空间, $V^\ast$表示由所有线性函数$V\to \mathbb R$组成的对偶空间.试证明:

（1）映射$V\to V^\ast,v\mapsto<\cdot,v>$是线性同构.

（2）对任意线性映射$f:V\to V$.验证映射$f^\ast:V^\ast\to V^\ast.f^\ast(\ell)=\ell\cdot f$是对偶空间的线性映射.

（3）对任意线性映射$\varphi:V\to V$,存在唯一线性映射$\varphi^\ast: V\to V$满足:$<\varphi(x),y>=<x,\varphi^\ast(y)>,\forall x,y\in V$.

5.(10分) 证明：当$x\to 1^-$时,$\sum\limits_{n = 0}^\infty {{x^{{n^2}}}} \sim \frac{1}{2}\sqrt {\frac{\pi }{{1 - x}}} .$

6.(10分) 证明：圆的所有外切三角形中,以正三角形的面积为最小.

7.(15分)设$\varphi(x)$表示实数$x$与其最近整数间之差的绝对值.令$f(x)=\sum_{k=0}^\infty \frac{\varphi(4^k x)}{4^k}.$证明：

（1）(5分). $f(x)$在$(-\infty,+\infty)$上处处连续;

（2）(10分). $f(x)$在$(-\infty,+\infty)$上处处不可微.

8.(15分)设$f(x)\in C[0,+\infty)$,且对任何非负实数$a$,有$\lim_{x\to\infty}(f(x+a)-f(x))=0.$证明：存在$g(x)\in C[0,+\infty)$和$h(x)\in C^1[0,+\infty)$,使得: $f(x)=g(x)+h(x)$,且满足$\lim_{x\to\infty}g(x)=0,\lim_{x\to\infty}h'(x)=0.$

中科院数学系统院高校招生考试试题

愿以一朵花的姿态行走世间，看得清世间繁杂却不在心中留下痕迹，花开成景,花落成诗。

1 浙大考题

2016 年高校招生考试：数学(甲卷)

满分100分,考试时间120分钟

1. (15分)求$\int_0^{ + \infty } {\frac{{{e^{ - ax}} - {e^{ - bx}}}}{x}dx} \quad \left( {b > a} \right).$

2. (15分) $\sum_{i=1}^n a_n$发散, $a_n$为正项级数.求证:

(1) $\sum_{i=1}^\infty \frac{a_n}{S_n}$发散;

(2) $\sum_{i=1}^\infty \frac{a_{n+1}}{S_n}$发散.

3. (15分) 求

$\int\limits_{{x^2} + {y^2} + {z^2} = {R^2}} {\frac{{dS}}{{\sqrt {{x^2} + {y^2} + {{\left( {z - h} \right)}^2}} }}} .$

4. (15分) 设$A:V\to V$,${H_{A,\alpha }}\left( t \right) = \left\{ {\varphi \left( t \right)\left| {\varphi \left( x \right) \in Q\left[ t \right],\varphi \left( x \right) \cdot \alpha = 0} \right.} \right\}$中次数最小的一个.证: $\exists \alpha \in V$,使${H_{A,\alpha }}\left( t \right)$为$A$的极小多项式.

1.1 某同学面试问题

1. 求$\int_{ - \infty }^{ + \infty } {\frac{1}{{\left( {1 + {x^2}} \right)\left( {1 + {x^6}} \right)}}dx} .$

2. 举一个无穷次可导却不解析的函数.

2 湖南大学考题

2016 年高校招生考试：数学(乙卷)

1. (15分)

(1) 求极限$\mathop {\lim }_{x \to - \infty } \left( {\sqrt {\left( {x + a} \right)\left( {x + b} \right)} + x} \right)$;

(2) 设$f(x)$满足$f\left( x \right) + 2f\left( {\frac{1}{x}} \right) = \frac{3}{x}$,求$f(x)$的导数;

(3) 求$\mathop {\lim }_{n \to \infty } \sqrt[n]{{\frac{{{n^n}}}{{n!}}}}$.

2. (15分)设$r\geq 0$,求积分$\frac{1}{{2\pi }}\int_0^{2\pi } {\log \left( {1 - 2r\cos x + {r^2}} \right)dx} .$

3. (10分)设$0<\mu <1,a>0$, $M_n$是$e^{-(x+ax^\mu )x^n}$在$(0,+\infty)$上的最大值.求$\mathop {\lim }\limits_{n \to \infty } {\left( {\frac{{{M_n}}}{{n!}}} \right)^{{n^{ - \mu }}}}.$

4. (10分)设函数$f(x)$在闭区间$[a,b]$上二次连续可微,并且$f(a)=f(b)=0$.证明不等式:

${M^2} \le \frac{{{{\left( {b - a} \right)}^3}}}{2}\int_a^b {{{\left| {f''\left( x \right)} \right|}^2}dx} ,$其中$M=\sup_{a\leq x\leq b}|f(x)|$.

5. (10分)设$A = \left( {\begin{array}{*{20}{c}}4&0\\0&1\end{array}} \right),B = \left( {\begin{array}{*{20}{c}}{\cos \theta }&{ - \sin \theta }\\{\sin \theta }&{\cos \theta }\end{array}} \right)\left( {\begin{array}{*{20}{c}}3&0\\0&{ - 2}\end{array}} \right){\left( {\begin{array}{*{20}{c}}{\cos \theta }&{ - \sin \theta }\\{\sin \theta }&{\cos \theta }\end{array}} \right)^{ - 1}}$,求以下矩阵的特征根:

$A + B,A \otimes \left( {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right) + \left( {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right) \otimes B,A \otimes B.$

6. (10分)证明以下矩阵组成的集合是实数域上的线性空间,求其维数及一组基,并证明行列式$\det X$是二次型,写出其对应的双线性型.

$M = \left\{ {X = \left( {\begin{array}{*{20}{c}}{{x_0} + {x_3}}&{{x_1} - i{x_2}}\\{{x_1} + i{x_2}}&{{x_0} - {x_3}}\end{array}} \right):{x_0},{x_1},{x_2},{x_3} \in \mathbb{R} } \right\}.$

7. (20分)设可逆矩阵$A\in M_n(\mathbb C)$的特征值为$\lambda_1,\cdots,\lambda_n$.求线性变换

$M_n(\mathbb C)\to M_n(\mathbb C),\quad X\mapsto AXA'$

3 西安交大考题

2016 年高校招生考试：数学(乙卷)

1. (15分)

(1) 求极限$\mathop {\lim }_{x \to - \infty } \left( {\sqrt {\left( {x + a} \right)\left( {x + b} \right)} + x} \right)$;

(2) 设$f(x)$满足$f\left( x \right) + 2f\left( {\frac{1}{x}} \right) = \frac{3}{x}$,求$f(x)$的导数;

(3) 设$f:[0,1]\to R$连续,求$\mathop {\lim }_{n \to \infty } \int_0^1 {\int_0^1 \cdots } \int_0^1 {f\left( {\frac{{{x_1} \cdots {x_n}}}{n}} \right)d{x_1}d{x_2} \cdots d{x_n}}$.

\begin{align*}&\int_{[0,1]^n}\left| f\left(\frac{x_1+x_2+\cdots+x_n}{n}\right)-f(\frac{1}{2})\right|dx_1dx_2\cdots dx_n\\\leq &\int_{\left|\frac{x_1+x_2+\cdots+x_n}{n}-\frac{1}{2}\right|\geq\delta}\left| f\left(\frac{x_1+x_2+\cdots+x_n}{n}\right)-f(\frac{1}{2})\right|dx_1dx_2\cdots dx_n\\+&\int_{\left|\frac{x_1+x_2+\cdots+x_n}{n}-\frac{1}{2}\right|<\delta}\left| f\left(\frac{x_1+x_2+\cdots+x_n}{n}\right)-f(\frac{1}{2})\right|dx_1dx_2\cdots dx_n\\\leq&2M\int_{\left|\frac{x_1+x_2+\cdots+x_n}{n}-\frac{1}{2}\right|\geq\delta}dx_1dx_2\cdots dx_n+\varepsilon\\\leq&\frac{2M}{\delta^2}\int_{\left|\frac{x_1+x_2+\cdots+x_n}{n}-\frac{1}{2}\right|\geq\delta}\left|\frac{x_1+x_2+\cdots+x_n}{n}-\frac{1}{2}\right|^2dx_1dx_2\cdots dx_n+\varepsilon\\\leq&\frac{2M}{\delta^2}\int_{[0,1]^n}\left|\frac{x_1+x_2+\cdots+x_n}{n}-\frac{1}{2}\right|^2dx_1dx_2\cdots dx_n+\varepsilon\\=&\frac{M}{6n\delta^2}+\varepsilon.\end{align*}

$$\mathop {\lim }\limits_{n \to \infty } E\left( {f\left( {\frac{{{X_1} + {X_2} + \cdots + {X_n}}}{n}} \right)} \right) = E\left( {\mathop {\lim }\limits_{n \to \infty } f\left( {\frac{{{X_1} + {X_2} + \cdots + {X_n}}}{n}} \right)} \right) = E\left( {f\left( {\mathop {\lim }\limits_{n \to \infty } \frac{{{X_1} + {X_2} + \cdots + {X_n}}}{n}} \right)} \right) = f\left( {\frac{1}{2}} \right).$$

2. (15分)设$r\geq 0$,求积分$\frac{1}{{2\pi }}\int_0^{2\pi } {\log \left( {1 - 2r\cos x + {r^2}} \right)dx} .$

3. (20分)设$0<\mu <1,a>0$, $M_n$是$e^{-(x+ax^\mu )x^n}$在$(0,+\infty)$上的最大值.求$\mathop {\lim }\limits_{n \to \infty } {\left( {\frac{{{M_n}}}{{n!}}} \right)^{{n^{ - \mu }}}}.$

4. (10分)设$m$为正整数,方程$a\equiv b \mod m$定义为$m$能整除$a-b$.当$m$取何值时,以下线性方程组有整数解?

$\left\{ \begin{array}{l}x + 2y - z \equiv 1\left( {\bmod m} \right),\\2x - 3y + z \equiv 4\left( {\bmod m} \right),\\4x + y - z \equiv 9\left( {\bmod m} \right).\end{array} \right.$

5. (10分)设$A = \left( {\begin{array}{*{20}{c}}4&0\\0&1\end{array}} \right),B = \left( {\begin{array}{*{20}{c}}{\cos \theta }&{ - \sin \theta }\\{\sin \theta }&{\cos \theta }\end{array}} \right)\left( {\begin{array}{*{20}{c}}3&0\\0&{ - 2}\end{array}} \right){\left( {\begin{array}{*{20}{c}}{\cos \theta }&{ - \sin \theta }\\{\sin \theta }&{\cos \theta }\end{array}} \right)^{ - 1}}$,求以下矩阵的特征根: $A + B,A \otimes \left( {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right) + \left( {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right) \otimes B,A \otimes B.$

6. (10分)证明以下矩阵组成的集合是实数域上的线性空间,求其维数及一组基,并证明行列式$\det X$是二次型,写出其对应的双线性型.

$M = \left\{ {X = \left( {\begin{array}{*{20}{c}}{{x_0} + {x_3}}&{{x_1} - i{x_2}}\\{{x_1} + i{x_2}}&{{x_0} - {x_3}}\end{array}} \right):{x_0},{x_1},{x_2},{x_3} \in \mathbb{R} } \right\}.$

7. (20分)设$\Omega$为含有$n$个元素的有限集合, $2^\Omega$为$\Omega$的幂集(即$\Omega$的所有子集构成的集合).对任意$A,B\in 2^\Omega$,定义数乘$0A=\emptyset$(空集), $1A=A$,加法$A+B=(A\cup B)\backslash (A\cap B)$(对称差).

(1) 证明$2^\Omega$关于以上数乘及加法为域$Z_2=\{0,1\}$ (注意在此域上$1+1=0$)上的线性空间,求其维数.

(2) 求$2^\Omega$的一维子空间个数.

(3) 取定非空$X\in 2^\Omega$,定义线性算子$T_X:2^\Omega\mapsto 2^\Omega$为$T_X A=A\cap X,A\in 2^\Omega$.求$T_X$的极小多项式,特征多项式,特征值和相应的特征子空间.

4 吉大考题

2016 年高校招生考试：数学(丙卷)

1. (15分)计算

(1) 求极限$\mathop {\lim }_{n \to \infty } \frac{{{1^{\alpha - 1}} + \cdots + {n^{\alpha - 1}}}}{{{n^\alpha }}} \quad {\alpha > 0}$.

(2) 已知$f'(a)$存在,$f(a)\neq0$,求$\mathop {\lim }_{n \to \infty } {\left( {\frac{{f\left( {a + \frac{1}{n}} \right)}}{{f\left( a \right)}}} \right)^n}$.

(3) 设$f:[0,1]\to \mathbb R$连续,求$\mathop {\lim }\limits_{n \to \infty } \int_0^1 {\int_0^1 \cdots } \int_0^1 {f\left( {{{\left( {{x_1} \cdots {x_n}} \right)}^{1/n}}} \right)d{x_1}d{x_2} \cdots d{x_n}} .$

2. (15分)设$\phi (x)>0,f(x)>0$都是$[a,b]$上连续函数,求$\mathop {\lim }\limits_{n \to \infty } \sqrt[n]{{\int_a^b {\phi \left( x \right){{\left( {f\left( x \right)} \right)}^n}dx} }}.$

3. (20分)证明$\binom n1 - \frac{1}{2}\binom n2 + \frac{1}{3} \binom n3 - \cdots + (-1)^{n-1}\frac1n\binom nn = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}$.

4. (10分)设$x,y$都是复数域上$n$阶方阵,定义$x^{(0)}=x,x^{(1)}=[x,y]\equiv xy-yx,x^{(j)}=[x^{(j-1)},y]$.证明

$\sum\limits_{i = 0}^k {{y^i}x{y^{k - i}}} = \sum\limits_{j = 0}^k {\binom{k + 1}{j + 1} {y^{k - j}}{x^{\left( j \right)}}} .$

5. (10分)给出平面中以下三条不同直线相交于一点的条件

$ax+by+c=0,\quad bx+cy+a=0,\quad cx+ay+b=0.$

$\left( {\begin{array}{*{20}{c}}0&1&0\\0&0&1\\a&b&c\end{array}} \right).$

6. (10分) 给出$M_2(\mathbb C)$中幂零矩阵所张成的线性空间的一组基.描述$M_n(\mathbb C)$中幂零矩阵所张成的线性空间.

7. (20分)证明$\cos x$是超越函数.

$\sum\limits_{p,q}a_{pq} x^p (f(x))^q=0,\quad \forall x\in \mathbb R.$

5 大连理工考题

2016 年高校招生考试：数学(丁卷)

1. (15分)计算

(1) 求${\sqrt 2 ^{{{\sqrt 2 }^{{{\sqrt 2 }^ \cdots }}}}}$;

(2) 求$\mathop {\lim }\limits_{n \to \infty } \sqrt[n]{{\frac{{{n^n}}}{{n!}}}}$;

(3) 求不定积分$\int {\frac{{x\ln x}}{{{{\left( {1 + {x^2}} \right)}^2}}}dx}$.

2. (15分)设$\phi (x)>0,f(x)>0$都是$[a,b]$上连续函数,求

$\mathop {\lim }\limits_{n \to \infty } \frac{{\int_a^b {\phi \left( x \right){{\left( {f\left( x \right)} \right)}^{n + 1}}dx} }}{{\int_a^b {\phi \left( x \right){{\left( {f\left( x \right)} \right)}^n}dx} }}.$

3. (20分) 设$f(x)$为$[a,b]$上可微函数, $f(a)=f(b)=0$,但$f(x)$不恒等于零,则存在$\xi\in (a,b)$使得

$\left| {f'\left( \xi \right)} \right| > \frac{4}{{{{\left( {b - a} \right)}^2}}}\int_a^b {f\left( x \right)dx} .$

4. (10分)设$m$为正整数,方程$a\equiv b \mod m$定义为$m$能整除$a-b$.当$m$取何值时,以下线性方程组有整数解?

$\left\{ \begin{array}{l}x \equiv 1\left( {\bmod \,2} \right),\\x \equiv 2\left( {\bmod \,3} \right),\\x\equiv 4\left( {\bmod \,5} \right).\end{array} \right.$

5. (10分)证明代数数集合为可数集.

6. (10分)设$n\geq2$,矩阵$A=(a_{ij})\in M_{n\times n}(\mathbb Z)$的每个元素要么是$-3$,要么是$4$,即$a_{ij}\in \{-3,4\}$. (1)设$S$是所有这些矩阵的和,求$S$及其秩$\mathrm{rank}\, S$; (2)证明行列式$|A^2|$是$7^{2n-2}$的倍数,即$7^{2n-2} |\, |A^2|$.

7. (20分)设$A = \left( {\begin{array}{*{20}{c}}a&1&0\\0&a&1\\0&0&a\end{array}} \right)\in M_{3\times 3}(\mathbb C)$,多项式$p(x)\in \mathbb C[x]$.

(1)证明: $p\left( A \right) = \left( {\begin{array}{*{20}{c}}{p\left( a \right)}&{p'\left( a \right)}&{p''\left( a \right)/2}\\0&{p\left( a \right)}&{p'\left( a \right)}\\0&0&{p\left( a \right)}\end{array}} \right)$. \quad (2)求$e^A$.

6 中科大考题

7 山大考题

2016 年高校招生考试：数学(X卷)

1. (15分)计算

(1) 求$\mathop {\lim }_{x \to 0} \frac{{\sqrt {1 + \tan x} - \sqrt {1 + \sin x} }}{{{x^3}}}$;

(2) 求$f(x)=x^{x^x}$的导数;

(3) 求$\mathop {\lim }\limits_{n \to \infty } \int_0^1 {\int_0^1 \cdots } \int_0^1 {\frac{{x_1^2 + x_1^2 + \cdots + x_n^2}}{{{x_1} + {x_2} + \cdots + {x_n}}}d{x_1}d{x_2}d{x_n}} .$

2. (15分)已知$f\left( x \right) = \prod_{i = 1}^k {\left( {x - {a_i}} \right)}$,且$- \frac{{f'\left( x \right)}}{{f\left( x \right)}} = {c_0} + {c_1}x + {c_2}{x^2} + \cdots + {c_n}{x^n} + \cdots ,$求$\mathop {\lim }\limits_{n \to \infty } \frac{{{c_n}}}{{{c_{n - 1}}}}$和$\mathop {\lim }\limits_{n \to \infty } \sqrt[n]{{{c_n}}}$.

3. (20分) $a,b$为实数, $x^3+abx+b$在复数域上有重根,则$a,b$应满足什么条件?

4. (10分)求${\left( {\begin{array}{*{20}{c}}{{e^{i\theta }}}&{2i\sin \alpha }\\0&{{e^{i\theta }}}\end{array}} \right)^n}.$

8 厦大考题

1. $A,B$特征值不同, $f_A,f_B$为其特征多项式.

(1) 存在$g(\lambda),h(\lambda)$使得$g(B)f_A(B)=I,h(A)g_B(A)=I.$

(2) $AX-XB=0$只有零解;

(3) $AX-XB=C$有唯一解.

2. 设$f(x)=\frac1{1-x-x^2}$,证明$\sum_{n=1}^\infty\frac{n!}{f^{(n)}(0)}$收敛,其中$f^{(n)}(0)$表示$f(x)$在$0$点的$n$阶导数.

武汉大学2016年基础数学复试笔试试题

1.设$f(x)$在$(a,b)$上可微,且$f(x)$在$a$点右连续,试证:

(1) 若导函数$f'(x)$的右函数极限存在且为$A$,证明导函数$f'(x)$在$a$点的右侧存在且${{f'}_ + }\left( a \right) = \mathop {\lim }\limits_{x \to {a^ + }} f'\left( x \right) = A.$

(2) $f'(x)$在$(a,b)$上不存在第一类间断点.

2.若级数$\sum_{n=1}^\infty a_n$收敛,证明级数$\sum\limits_{n = 1}^\infty {\frac{{{a_n}}}{{\sqrt {{r_{n - 1}}} + \sqrt {{r_n}} }}}$收敛,其中${r_n} = \sum_{k = n + 1}^\infty {{a_k}}$.

3.讨论$\lambda$取何值时, $y''+\lambda y=0$有非零的初值解,其中$y(0)=y(1)=0$.

4.$A$为正定矩阵, $A-B$为半正定矩阵,试证明:

(1) 方程$|\lambda B-A|=0$关于根$\lambda\geq1$;

(2) $|B|\leq |A|$.

5.讨论积分$\int_0^1 x^{p-1}\ln^2 xdx$在下列情况下的一致收敛性.

(1) $p\geq p_0>0$;

(2) $p>0$..

6. 设非负函数$f(x,y)$在区域$D$上可积,证明积分$\iint\limits_D f(x,y)dx=0$充分必要条件为$f(x,y)$在$D$上的连续点上等于$0$.

武汉大学2015年基础数学复试笔试试题

1.导函数极限定理, $f'(0)$存在, 而$\lim_{x\to0} f'(x)$不存在的例子.

$f\left( x \right) = \begin{cases}{x^2}\sin \frac{1}{x}, &x \ne 0\\0, &x = 0\end{cases}.$

2.$\{a_n\}$是正项数列且单增.证明: $\sum_{n = 1}^\infty {\left( {\frac{{{a_{n + 1}}}}{{{a_n}}} - 1} \right)}$收敛$\Leftrightarrow$ $\{a_n\}$有界.

3.设$A$是$n$阶可逆复方阵，证明存在分解

$A=UT,$

4.讨论微分方程过点y=0的解的存在性和唯一性，其中$\alpha>0$.

$\frac{dy}{dx}=|y|^{\alpha}.$

5.证明含参变量积分

$\int_{0}^{+\infty}\frac{\sin{xy}}{y(1+x)}dy$

6.利用数学归纳法证明$n$维空间中的$n+1$面体${B_{n + 1}}:\sum\limits_{i = 1}^n {{{\left( {{x_i}} \right)}^{1/\alpha }}} \le 1,\alpha > 0$的体积为$V = \frac{{{2^n}{\alpha ^{n - 1}}{{\left[ {\Gamma \left( \alpha \right)} \right]}^{n - 1}}\Gamma \left( {\alpha + 1} \right)}}{{\Gamma \left( {\alpha n + 1} \right)}},$

武汉大学2014年基础数学复试笔试题回忆

1. 若$f(x)$的导函数当$x\to 0$时极限存在，证明$f(x)$在$0$点的导数存在。
2. 上述命题的逆命题是否成立？就是说$f(x)$在$0$点的导数存在是不是一定有$f(x)$在$x\to 0$的极限存在？成立请证明，否则给出反例。

$\int_{0}^{+\infty}\frac{\sin{xy}}{y(1+x)}dy$

$d(\varphi(x),\varphi(y))<d(x,y) \qquad (x\neq y,x,y\in E).$

$f(x)=\sum_{n=0}^{\infty}a_{n}x^{n}$

$\lim_{n\to\infty}na_{n}=0.$

$\frac{dy}{dx}=|y|^{\alpha}.$

$A=UT,$

1. 证明$f$是$\mathbb{C}^{2\times 2}$的线性变换;
2. 求$f$在$\mathbb{C}^{2\times 2}$的基

${E_{11}} = \left( {\begin{array}{*{20}{c}}1&0\\0&0\end{array}} \right),{E_{12}} = \left( {\begin{array}{*{20}{c}}0&1\\0&0\end{array}} \right),{E_{21}} = \left( {\begin{array}{*{20}{c}}0&0\\1&0\end{array}} \right),{E_{22}}= \left( {\begin{array}{*{20}{c}}0&0\\0&1\end{array}} \right)$

下的矩阵$M$.

3. 给出$\mathbb{C}^{2\times 2}$的两个非零的$f$不变子空间$V_1$和$V_2$,使得$\mathbb{C}^{2\times 2}=V_1\oplus V_2$,请阐述理由.
4. 证明:存在$\mathbb{C}^{2\times 2}$的一个基,使得$f$在这一基下的矩阵为对角矩阵当且仅当矩阵$A$与对角矩阵相似.