MatheMaticas中的巧妙范例[转载自哆嗒数学平台吧chzhn]
1.EllipticK 范例
在三维立点阵中随机访问并返回原点的概率:
1 - \[Pi]^2/
72 (6 + 2 Sqrt[3] + Sqrt[6]) EllipticK[
35 + 24 Sqrt[2] - 20 Sqrt[3] - 14 Sqrt[6]]^-2 // N
测试程序
BlockRandom[SeedRandom[11]; Count[Table[walkerPosition = {0, 0, 0}; steps = 0; While[steps == 0 || (steps < 100 && walkerPosition =!= {0, 0, 0}), steps++; walkerPosition = walkerPosition + {{1, 0, 0}, {-1, 0, 0}, {0, 1, 0}, {0, -1, 0}, {0, 0, 1}, {0, 0, -1}}[[Random[Integer, {1, 6}]]]]; steps, {1000}], _?(# < 100 &)]]
2.Beta
贝塔函数倒数的$n\times n$ 矩阵的行列式为$n!$:
3.Binomial
希尔伯特矩阵的逆:\[{H_{ij}} = \frac{1}{{i + j - 1}}.\]
逆矩阵系数为
4.Erf
5.HermiteH
广义 Lissajous 图形:
Block[{n = 11, m = 13},
ParametricPlot[{ Exp[-x^2/2] HermiteH[n, x]/Sqrt[2^n n!],
Exp[-x^2/2] HermiteH[m, x]/Sqrt[2^m m!]}, {x, -8, 8}]]
6.BesselI
等差数列的连分数表示
\[1 + \frac{1}{{2 + \frac{1}{{3 + \frac{1}{{4 + \frac{1}{{5 + \frac{1}{{6 + \cdots }}}}}}}}}} = \frac{{{I_0}\left( 2 \right)}}{{{I_1}\left( 2 \right)}}.\]
代码ContinuedFraction[BesselI[0, 2]/BesselI[1, 2], 20]
输出
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}
7.Floor
数列$\{1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6\cdots\}的通项
\[{a_n} = \left[ {\sqrt {2k} + \frac{1}{2}} \right].\]
8.Exp
(1)Exp迭代分形
DensityPlot[
Length @FixedPointList[
If[TrueQ[Abs[#] > 10.^5], Indeterminate, Exp[#/(x + I y)]] &,
x + I y, 10], {x, -1, 3}, {y, -1, 1}, MaxRecursion -> 4]
(2)黎曼- 维尔斯特拉斯函数任何位置不可微:
ParametricPlot[{Re[#], Im[#]} &@\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(j = 1\), \(200\)]
\*FractionBox[
SuperscriptBox[\(E\), \(I\
\*SuperscriptBox[\(j\), \(3\)]\ \[CurlyPhi]\)],
SuperscriptBox[\(j\), \(2\)]]\), {\[CurlyPhi], 0, 2 \[Pi]}]
9.Tan
12.Factor
$x^n-1$在整数范围内充分分解后,几乎所有因式的系数不是1就是-1,但是也有一些例外,第一个例子是
\begin{align*}&{x^{105}} - 1 = ( - 1 + x)(1 + x + {x^2})(1 + x + {x^2} + {x^3} + {x^4})(1 + x + {x^2} + {x^3} + {x^4} + {x^5} + {x^6})\\&(1 - x + {x^3} - {x^4} + {x^5} - {x^7} + {x^8})(1 - x + {x^3} - {x^4} + {x^6} - {x^8} + {x^9} - x^{11} + x^{12})\\&(1 - x + {x^5} - {x^6} + {x^7} - {x^8} + x^{10} - {x^{11}} + {x^{12}} - {x^{13}} + {x^{14}} - {x^{16}} + {x^{17}} - {x^{18}} + {x^{19}} - {x^{23}} + {x^{24}})\\&(1 + x + {x^2} - {x^5} - {x^6} - 2{x^7} - {x^8} - {x^9} + {x^{12}} + {x^{13}} + {x^{14}} + {x^{15}} + {x^{16}} + {x^{17}} - {x^{20}} - {x^{22}} - {x^{24}} \\&- {x^{26}} - {x^{28}} + {x^{31}} + {x^{32}} + {x^{33}} + {x^{34}} + {x^{35}} + {x^{36}} - {x^{39}} - {x^{40}} - 2{x^{41}} - {x^{42}} - {x^{43}} + {x^{46}} + {x^{47}} + {x^{48}}).\end{align*}