谢惠民题解之23.2含参变量广义积分
1.讨论下列广义积分的一致收敛性:
(1) ∫+∞0e−(1+a2)tsintdt,a∈(−∞,+∞);
(2) ∫+∞0cosxy√x+ydx,y∈[y0,+∞),其中y0>0;
(3) ∫+∞0e−tx2dx,t∈(0,+∞);
(4) ∫+∞1e−αxcosx√xdx,α∈[0,+∞);
(5) ∫+∞0e−(x−y)2dx,y∈(−∞,+∞);
(6) ∫+∞0xlnxe−t√xdx, (1) t∈[t0,+∞),其中t0>0, (2) t∈(0,+∞);
(7) ∫+∞11−e−uttcostdt,u∈[0,1];
(8) ∫+∞0αt1+α2+t2⋅e−α2t2cosα2t2dt,α∈(0,+∞);
(9) ∫+∞0e−x2(1+y2)sinydy,x∈(0,+∞);
(10) ∫+∞0αdx1+α2x2,α∈(0,1);
(11) ∫20xt3√(x−1)(x−2)dx,|t|<12;
(12) ∫10(1−x)u−1dx, (1) u∈[a,+∞),其中a>0, (2) u∈(0,+∞).
解.
(1) 一致收敛.由于
|e−(1+a2)tsint|≤e−t,0≤t<+∞,−∞<a<+∞,
而∫+∞0e−tdt=1收敛,由Weierstrass判别法知, ∫+∞0e−(1+a2)tsintdt在(−∞,+∞)上一致收敛.
(2) 一致收敛.由于
|∫A0cosxydx|=|sinAyy|≤1y≤1y0,A≥0,y≥y0,
因此它在[y0,+∞)一致有界.而1/√x+y是x的单调减少函数且0<1/√x+y≤1/√x+y0,而lim, 故这个极限关于y在[y_0,+\infty)上是一致的.于是由Dirichlet判别法知\int_0^{ + \infty } {\frac{{\cos xy}}{{\sqrt {x + y} }}dx} 在\left[ {{y_0}, + \infty } \right)上一致收敛.
(3) 非一致收敛.对于正整数n,取t_n=\frac1{n^2},这时
\begin{align*}\left| {\int_n^{2n} {{e^{ - {t_n}{x^2}}}dx} } \right| &= \int_n^{2n} {{e^{ - \frac{1}{{{n^2}}}{x^2}}}dx} > \int_n^{2n} {{e^{ - \frac{1}{{{n^2}}}{{\left( {2n} \right)}^2}}}dx} \\&= \int_n^{2n} {{e^{ - 4}}dx} = {e^{ - 4}}n \ge {e^{ - 4}}.\end{align*}
因此,只要取\varepsilon_0=e^{-4},则对于任意大的正数A_0,总存在正整数n满足n>A_0,及t_n=1/n^2\in (0,+\infty),使得\left| {\int_n^{2n} {{e^{ - {t_n}{x^2}}}dx} } \right| > {e^{ - 4}} = {\varepsilon _0}.由Cauchy收敛原理的推论可知\int_0^{ + \infty } {{e^{ - t{x^2}}}dx} 关于t在\left( {0, + \infty } \right)上非一致收敛.
(4) \int_1^A {\cos xdx}显然有界, 1/\sqrt{x}在[1,+\infty)上单调且\lim_{x\to +\infty}\frac{1}{\sqrt{x}}=0,由Dirichlet判别法, \int_1^{+\infty}\frac{\cos x}{\sqrt{x}}收敛,它当然关于\alpha一致收敛.显然e^{-\alpha x}关于x单调,且0\leq e^{-\alpha x}\leq 1,\quad 0\leq \alpha<+\infty,1\leq x<+\infty,即e^{-\alpha x}一致有界.由Abel判别法, \int_1^{ + \infty } {{e^{ - \alpha x}}\frac{{\cos x}}{{\sqrt x }}dx}在\left[ {0, + \infty } \right)上一致收敛.
(5) 不一致收敛.注意到\displaystyle J\left( A \right) = \int_A^{2A} {{e^{ - {{\left( {x - y} \right)}^2}}}dx} = \int_{A - y}^{2A - y} {{e^{ - {u^2}}}du},并让y取A值,则得\displaystyle J\left( A \right) = \int_0^A {{e^{ - {u^2}}}du} \to \int_0^{ + \infty } {{e^{ - {u^2}}}du} \left( {A \to + \infty } \right),即J(A)在A\to +\infty时不趋于0.
(6) 先证明\int_0^{ + \infty } {x\ln x{e^{ - t\sqrt x }}dx}在[t_0,+\infty)(t_0>0)上一致收敛.由于
\left| {x\ln x{e^{ - t\sqrt x }}} \right| \le \left| {x\ln x} \right|{e^{ - {t_0}\sqrt x }},\quad 0\leq x<+\infty,t_0\leq t<+\infty,
而\int_0^1 {x\ln \frac{1}{x}{e^{ - {t_0}\sqrt x }}dx}与\int_1^{ + \infty } {x\ln x{e^{ - {t_0}\sqrt x }}dx}均收敛,由Weierstrass判别法知,
\int_0^{ + \infty } {x\ln x{e^{ - t\sqrt x }}dx}在[t_0,+\infty)上一致收敛.
再证明\int_0^{ + \infty } {x\ln x{e^{ - t\sqrt x }}dx}在(0,+\infty)上非一致收敛.对于正整数n,取t_n=\frac{1}{\sqrt{n}},这时
\begin{align*}&\left| {\int_n^{2n} {x\ln x{e^{ - {t_n}\sqrt x }}dx} } \right| = \left| {\int_n^{2n} {x\ln x{e^{ - \frac{1}{{\sqrt n }}\sqrt x }}dx} } \right|\\>& n\ln n\int_n^{2n} {{e^{ - \frac{1}{{\sqrt n }}\sqrt x }}dx} > n\ln n\int_n^{2n} {{e^{ - \frac{1}{{\sqrt n }}\sqrt {2n} }}dx} \\=& {n^2}\ln n \cdot {e^{ - \sqrt 2 }} \ge 4\ln 2 \cdot {e^{ - \sqrt 2 }}.\end{align*}
因此,只要取{\varepsilon _0} = 4\ln 2 \cdot {e^{ - \sqrt 2 }},则对于任意大的正数A_0,总存在正整数n满足n>A_0,及y_n=\frac1{\sqrt n}\in (0,+\infty),使得\left| {\int_n^{2n} {x\ln x{e^{ - {t_n}\sqrt x }}dx} } \right| > 4\ln 2 \cdot {e^{ - \sqrt 2 }}=\varepsilon_0.由Cauchy收敛原理的推论知\int_0^{ + \infty } {x\ln x{e^{ - t\sqrt x }}dx}关于t在(0,+\infty)上非一致收敛.
(7) 一致收敛.由于\int_1^{ + \infty } {\frac{{\cos t}}{t}dt}收敛,它当然关于u一致收敛.显然1-e^{-ut}关于t单调,且
0\leq 1-e^{-ut}\leq 1,\quad 0\leq u\leq1,1\leq t<+\infty,即1-e^{-ut}一致有界.由Abel判别法, \int_1^{ + \infty } {\frac{{1 - {e^{ - ut}}}}{t}\cos tdt}在\left[ {0,1} \right]上一致收敛.
(8) 一致收敛.由于\left| {\int_0^A {\alpha t \cdot {e^{ - {\alpha ^2}{t^2}}}\cos {\alpha ^2}{t^2}dt} } \right| \le \int_0^A {\alpha t \cdot {e^{ - {\alpha ^2}{t^2}}}dt} = \frac{{1 - {e^{ - {\alpha ^2}{A^2}}}}}{{2\alpha }},且\mathop {\lim }\limits_{\alpha \to 0} \frac{{1 - {e^{ - {\alpha ^2}{A^2}}}}}{{2\alpha }} = 0,\mathop {\lim }\limits_{\alpha \to + \infty } \frac{{1 - {e^{ - {\alpha ^2}{A^2}}}}}{{2\alpha }} = 0,
因此它在(0,+\infty)一致有界,而\frac{1}{{1 + {\alpha ^2} + {t^2}}}是x的单调减少函数且\frac{1}{{1 + {\alpha ^2} + {t^2}}} \le \frac{1}{{1 + {t^2}}},\lim_{t\to \infty}\frac1{1+t^2}=0,因此\lim_{t\to +\infty}\frac{1}{{1 + {\alpha ^2} + {t^2}}}=0关于\alpha在(0,+\infty)上是一致的,于是由Dirichlet判别法知\int_0^{ + \infty } {\frac{{\alpha t}}{{1 + {\alpha ^2} + {t^2}}} \cdot {e^{ - {\alpha ^2}{t^2}}}\cos {\alpha ^2}{t^2}dt}在\left( {0, + \infty } \right)上一致收敛.
(9) 非一致收敛.对于正整数n,取{x_n} = \frac{1}{{\sqrt {1 + {{\left( {2n + 1} \right)}^2}{\pi ^2}} }},这时
\begin{align*}\left| {\int_{2n\pi }^{\left( {2n + 1} \right)\pi } {{e^{ - x_n^2\left( {1 + {y^2}} \right)}}\sin ydy} } \right| &= \left| {\int_{2n\pi }^{\left( {2n + 1} \right)\pi } {{e^{ - \frac{1}{{1 + {{\left( {2n + 1} \right)}^2}{\pi ^2}}}\left( {1 + {y^2}} \right)}}\sin ydy} } \right|\\&> \frac{1}{e}\int_{2n\pi }^{\left( {2n + 1} \right)\pi } {\sin ydy} = \frac{2}{e}.\end{align*}
因此,只要取\varepsilon_0=2/e,则对于任意大的正数A_0,总存在正整数n满足2n\pi>A_0,及y_n=\frac{1}{{\sqrt {1 + {{\left( {2n + 1} \right)}^2}{\pi ^2}} }} \in (0,+\infty),使得\left| {\int_{2n\pi }^{\left( {2n + 1} \right)\pi } {{e^{ - x_n^2\left( {1 + {y^2}} \right)}}\sin ydy} } \right| > \frac{2}{e}=\varepsilon_0.由Cauchy收敛原理的推论知\int_0^{ + \infty } {{e^{ - {x^2}\left( {1 + {y^2}} \right)}}\sin ydy} 关于x在\left( {0, + \infty } \right)上非一致收敛.
(10) 非一致收敛.对于任意取定的正数A,由于\int_A^{ + \infty } {\frac{{\alpha dx}}{{1 + {\alpha ^2}{x^2}}}} = \frac{\pi }{2} - \arctan \left( {\alpha A} \right),取\alpha=1/A,则有\int_A^{ + \infty } {\frac{{\alpha dx}}{{1 + {\alpha ^2}{x^2}}}} = \int_A^{ + \infty } {\frac{{1/A}}{{1 + {x^2}/{A^2}}}dx} = \frac{\pi }{4} .因此\int_0^{ + \infty } {\frac{{\alpha dx}}{{1 + {\alpha ^2}{x^2}}}}在\left( {0,1} \right)上不一致收敛.
(11) 一致收敛.见周民强207页.利用
当0<x<1时,我们有
0 \le \left| {\frac{{{x^t}}}{{\sqrt[3]{{\left( {x - 1} \right)\left( {x - 2} \right)}}}}} \right| < \frac{1}{{\sqrt x \sqrt[3]{{\left( {x - 1} \right)\left( {x - 2} \right)}}}}.
当1<x<2时,有
0 \le \left| {\frac{{{x^t}}}{{\sqrt[3]{{\left( {x - 1} \right)\left( {x - 2} \right)}}}}} \right| < \frac{{\sqrt x }}{{\sqrt[3]{{\left( {x - 1} \right)\left( {2 - x} \right)}}}}.
因此有
\int_0^2 {\frac{{{x^t}}}{{\sqrt[3]{{\left( {x - 1} \right)\left( {x - 2} \right)}}}}dx} < \int_0^1 {\frac{1}{{\sqrt x \sqrt[3]{{\left( {1 - x} \right)\left( {2 - x} \right)}}}}dx} + \int_1^2 {\frac{{\sqrt x }}{{\sqrt[3]{{\left( {x - 1} \right)\left( {2 - x} \right)}}}}dx} .
注意到下列渐进估计
\begin{align*}{\frac{1}{{\sqrt x \sqrt[3]{{\left( {1 - x} \right)\left( {2 - x} \right)}}}}} &= O\left( {\frac{1}{{\sqrt x }}} \right),x \to {0^ + },\\{\frac{1}{{\sqrt x \sqrt[3]{{\left( {1 - x} \right)\left( {2 - x} \right)}}}}} &= O\left( {\frac{1}{{\sqrt[3]{{x - 1}}}}} \right),x \to 1,\\\frac{{\sqrt x }}{{\sqrt[3]{{\left( {x - 1} \right)\left( {2 - x} \right)}}}} &= O\left( {\frac{1}{{\sqrt[3]{{x - 1}}}}} \right),x \to 1,\\\frac{{\sqrt x }}{{\sqrt[3]{{\left( {x - 1} \right)\left( {2 - x} \right)}}}} &= O\left( {\frac{1}{{\sqrt[3]{{2 - x}}}}} \right),x \to 2,\end{align*}
可知右端积分均收敛.由Weierstrass判别法可知,原积分关于|t|<1/2一致收敛.
(12) 先证明\int_0^1 {{{\left( {1 - x} \right)}^{u - 1}}dx}在[a,+\infty)(a>0)上一致收敛.由于{\left( {1 - x} \right)^{u - 1}} \le {\left( {1 - x} \right)^{a - 1}},\quad 0 \le x \le 1,a \le u < + \infty,而\int_0^1 {{{\left( {1 - x} \right)}^{a - 1}}dx} = \frac{1}{a}收敛,由Weierstrass判别法知, \int_0^1 {{{\left( {1 - x} \right)}^{u - 1}}dx}在[a,+\infty)上一致收敛.
再证明\int_0^1 {{{\left( {1 - x} \right)}^{u - 1}}dx}在(0,+\infty)上非一致收敛.对于任意取定的正数A且A\to 0,由于\int_A^1 {{{\left( {1 - x} \right)}^{u - 1}}dx} = \frac{1}{A},
取u=A\in (0,+\infty ),当A足够小时,我们有\int_A^1 {{{\left( {1 - x} \right)}^{u - 1}}dx} = \frac{{{{\left( {1 - A} \right)}^u}}}{u} = \frac{{{{\left( {1 - A} \right)}^A}}}{A} > 1.因此\int_0^1 {{{\left( {1 - x} \right)}^{u - 1}}dx}在(0,+\infty)上非一致收敛.
2.设\displaystyle \int_0^{ + \infty } {{x^\lambda }f\left( x \right)dx}当\lambda=a,\lambda=b时收敛(a<b).证明\displaystyle \int_0^{ + \infty } {{x^\lambda }f\left( x \right)dx}当\lambda=a,\lambda=b关于\lambda\in [a,b]一致收敛.
证.这题来自菲哥第二册P577.积分\int_0^1 {{x^a}f\left( x \right)dx}是收敛的,而x^{\lambda-a}对于\lambda\geq a的值是x的单调函数,并以1为界.因此积分
\int_0^1 {{x^\lambda }f\left( x \right)dx} = \int_0^1 {{x^{\lambda - a}} \cdot {x^a}f\left( x \right)dx} 关于\lambda一致收敛.类似地可以看出以下积分
\int_1^{ + \infty } {{x^\lambda }f\left( x \right)dx} = \int_1^{ + \infty } {{x^{\lambda - b}} \cdot {x^b}f\left( x \right)dx} ,
关于\lambda\leq b一致收敛.因此原积分一致收敛.
3.证明积分\int_0^{ + \infty } {x{e^{ - xy}}dy}在(0,+\infty)上不一致收敛.
证.对于任意取定的正数A,由于
\int_A^{ + \infty } {x{e^{ - xy}}dy} = {e^{ - Ax}},
取x=1/A\in (0,+\infty),则有
\int_A^{ + \infty } {x{e^{ - xy}}dy} = \frac{1}{e}.因此\int_0^{ + \infty } {x{e^{ - xy}}dy}在(0,+\infty)上不一致收敛.
谢之题解:一道综合性的解几题
谢惠民下册P238第21章的一个参考题:
证明与曲面ax^2+by^2+cz^2=1(abc\neq0)相切的三个互相垂直的平面的交点在球面x^2+y^2+z^2=\frac1a+\frac1b+\frac1c上.
证:(幸子)椭球面方程为ax^2+by^2+cz^2=1(abc\neq0),则法向量{n_i} = \left( {a{x_i},b{y_i},c{z_i}} \right),切平面方程为a{x_i}x + b{y_i}y + c{z_i}z = 1.
设三个切点分别为{\alpha _i}\left( {{x_i},{y_i},{z_i}} \right)\left( {i = 1,2,3} \right),三平面交点为(x,y,z).由三平面垂直可知
\overrightarrow {{n_i}} \cdot \overrightarrow {{n_j}} = {a^2}{x_i}{x_j} + {b^2}{y_i}{y_j} + {c^2}{z_i}{z_j} = 0\left( {i \ne j} \right).
原点到三切平面的距离分别为
\frac{1}{{\sqrt {{a^2}{x_i}^2 + {b^2}{y_i}^2 + {c^2}{z_i}^2} }}\left( {i = 1,2,3} \right).
由几何关系(考虑长方体对角线)可知
{x^2} + {y^2} + {z^2} = \sum\limits_{i = 1}^3 {\frac{1}{{\left( {{a^2}{x_i}^2 + {b^2}{y_i}^2 + {c^2}{z_i}^2} \right)}}} .
设\left( {\begin{array}{*{20}{c}}x\\y\\z\end{array}} \right) = \left( {\begin{array}{*{20}{c}}{a{x_1}}&{a{x_2}}&{a{x_3}}\\{b{y_1}}&{b{y_2}}&{b{y_3}}\\{c{z_1}}&{c{z_2}}&{c{z_3}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{t_1}}\\{{t_2}}\\{{t_3}}\end{array}} \right),则对任意的i = 1,2,3,有
1 = \left( {\begin{array}{*{20}{c}}{a{x_i}}&{b{y_i}}&{c{z_i}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}x\\y\\z\end{array}} \right) = \left( {\begin{array}{*{20}{c}}{a{x_i}}&{b{y_i}}&{c{z_i}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{a{x_1}}&{a{x_2}}&{a{x_3}}\\{b{y_1}}&{b{y_2}}&{b{y_3}}\\{c{z_1}}&{c{z_2}}&{c{z_3}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{t_1}}\\{{t_2}}\\{{t_3}}\end{array}} \right) = {t_i}\left( {{a^2}{x_i}^2 + {b^2}{y_i}^2 + {c^2}{z_i}^2} \right).
并且
\begin{align*}&{x^2} + {y^2} + {z^2} = \left( {\begin{array}{*{20}{c}}x&y&z\end{array}} \right)\left( {\begin{array}{*{20}{c}}x\\y\\z\end{array}} \right) = \left( {\begin{array}{*{20}{c}}{{t_1}}&{{t_2}}&{{t_3}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{a{x_1}}&{b{y_1}}&{c{z_1}}\\{a{x_2}}&{b{y_2}}&{c{z_2}}\\{a{x_3}}&{b{y_3}}&{c{z_3}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{a{x_1}}&{a{x_2}}&{a{x_3}}\\{b{y_1}}&{b{y_2}}&{b{y_3}}\\{c{z_1}}&{c{z_2}}&{c{z_3}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{t_1}}\\{{t_2}}\\{{t_3}}\end{array}} \right)\\=& \sum\limits_{i = 1}^3 {{t_i}^2\left( {{a^2}{x_i}^2 + {b^2}{y_i}^2 + {c^2}{z_i}^2} \right)} = \sum\limits_{i = 1}^3 {\frac{1}{{\left( {{a^2}{x_i}^2 + {b^2}{y_i}^2 + {c^2}{z_i}^2} \right)}}} = \sum\limits_{i = 1}^3 {\frac{{a{x_i}^2 + b{y_i}^2 + c{z_i}^2}}{{\left( {{a^2}{x_i}^2 + {b^2}{y_i}^2 + {c^2}{z_i}^2} \right)}}} \\=& a\left( {\frac{{{x_1}^2}}{{\left( {{a^2}{x_1}^2 + {b^2}{y_1}^2 + {c^2}{z_1}^2} \right)}} + \frac{{{x_2}^2}}{{\left( {{a^2}{x_2}^2 + {b^2}{y_2}^2 + {c^2}{z_2}^2} \right)}} + \frac{{{x_3}^2}}{{\left( {{a^2}{x_3}^2 + {b^2}{y_3}^2 + {c^2}{z_3}^2} \right)}}} \right)\\+& b\left( {\frac{{{y_1}^2}}{{\left( {{a^2}{x_1}^2 + {b^2}{y_1}^2 + {c^2}{z_1}^2} \right)}} + \frac{{{y_2}^2}}{{\left( {{a^2}{x_2}^2 + {b^2}{y_2}^2 + {c^2}{z_2}^2} \right)}} + \frac{{{y_3}^2}}{{\left( {{a^2}{x_3}^2 + {b^2}{y_3}^2 + {c^2}{z_3}^2} \right)}}} \right)\\+& c\left( {\frac{{{z_1}^2}}{{\left( {{a^2}{x_1}^2 + {b^2}{y_1}^2 + {c^2}{z_1}^2} \right)}} + \frac{{{z_2}^2}}{{\left( {{a^2}{x_2}^2 + {b^2}{y_2}^2 + {c^2}{z_2}^2} \right)}} + \frac{{{z_3}^2}}{{\left( {{a^2}{x_3}^2 + {b^2}{y_3}^2 + {c^2}{z_3}^2} \right)}}} \right).\end{align*}
注意到对任意的w,记w = \sum\limits_{i = 1}^3 {{s_i}{n_i}} ,则{s_i} = \frac{{w \cdot {n_i}}}{{\left( {{a^2}{x_i}^2 + {b^2}{y_i}^2 + {c^2}{z_i}^2} \right)}},即w = \sum\limits_{i = 1}^3 {\frac{{w \cdot {n_i}}}{{\left( {{a^2}{x_i}^2 + {b^2}{y_i}^2 + {c^2}{z_i}^2} \right)}}{n_i}} .
分别令w = \sum\limits_{i = 1}^3 {\frac{{w \cdot {n_i}}}{{\left( {{a^2}{x_i}^2 + {b^2}{y_i}^2 + {c^2}{z_i}^2} \right)}}{n_i}} ,得
\begin{align*}a\left( {\frac{{{x_1}^2}}{{\left( {{a^2}{x_1}^2 + {b^2}{y_1}^2 + {c^2}{z_1}^2} \right)}} + \frac{{{x_2}^2}}{{\left( {{a^2}{x_2}^2 + {b^2}{y_2}^2 + {c^2}{z_2}^2} \right)}} + \frac{{{x_3}^2}}{{\left( {{a^2}{x_3}^2 + {b^2}{y_3}^2 + {c^2}{z_3}^2} \right)}}} \right) &= \frac{1}{a},\\b\left( {\frac{{{y_1}^2}}{{\left( {{a^2}{x_1}^2 + {b^2}{y_1}^2 + {c^2}{z_1}^2} \right)}} + \frac{{{y_2}^2}}{{\left( {{a^2}{x_2}^2 + {b^2}{y_2}^2 + {c^2}{z_2}^2} \right)}} + \frac{{{y_3}^2}}{{\left( {{a^2}{x_3}^2 + {b^2}{y_3}^2 + {c^2}{z_3}^2} \right)}}} \right) &= \frac{1}{b},\\c\left( {\frac{{{z_1}^2}}{{\left( {{a^2}{x_1}^2 + {b^2}{y_1}^2 + {c^2}{z_1}^2} \right)}} + \frac{{{z_2}^2}}{{\left( {{a^2}{x_2}^2 + {b^2}{y_2}^2 + {c^2}{z_2}^2} \right)}} + \frac{{{z_3}^2}}{{\left( {{a^2}{x_3}^2 + {b^2}{y_3}^2 + {c^2}{z_3}^2} \right)}}} \right) &= \frac{1}{c}.\end{align*}
因此有{x^2} + {y^2} + {z^2} = \frac{1}{a} + \frac{1}{b} + \frac{1}{c}.
解法二.记d_i=\sqrt{a^2x_i^2+b^2y_i^2+c^2z_i^2},\ i=1,2,3,则\begin{pmatrix}\frac{ax_1}{d_1}&\frac{by_1}{d_1}&\frac{cz_1}{d_1}\\\frac{ax_2}{d_2}&\frac{by_2}{d_2}&\frac{cz_2}{d_2}\\\frac{ax_3}{d_3}&\frac{by_3}{d_3}&\frac{cz_3}{d_3}\end{pmatrix} 是正交矩阵,从而有
\frac{a^2x_1^2}{d_1^2}+\frac{a^2x_2^2}{d_2^2}+\frac{a^3x_3^2}{d_3^2}=1\Rightarrow \frac{ax_1^2}{d_1^2}+\frac{ax_2^2}{d_2^2}+\frac{ax_3^2}{d_3^2}=\frac{1}{a}.
类似得到另外两式, 相加便有
\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ax_1^2+by_1^2+cz_1^2}{d_1^2}+\frac{ax_2^2+by_2^2+cz_2^2}{d_2^2}+\frac{ax_3^2+by_3^2+cz_3^2}{d_3^2}=\frac{1}{d_1^2}+\frac{1}{d_2^2}+\frac{1}{d_3^2}.
谢之题解:重积分的应用举例
7.设u_i\in L^{p_i}(\Omega),p_i>0,i=1,2,\cdots,m,且{\sum\limits_{i = 1}^{m } {\frac{1}{{{p_i}}}} }=1.证明\iint\limits_\Omega {{u_1} \cdots {u_m}dxdy} \le {\left\| {{u_1}} \right\|_{{p_1}}} \cdots {\left\| {{u_m}} \right\|_{{p_m}}}.
解.利用P270的Holder不等式以及数学归纳法即可.假设m-1时不等式成立,则有
\begin{align*}&\iint\limits_\Omega {{u_1} \cdots {u_{m - 1}}{u_m}dxdy} \le \iint\limits_\Omega {\left| {{u_1} \cdots {u_{m - 1}}{u_m}} \right|dxdy} \\= &{\left\| {{u_1} \cdots {u_{m - 1}}{u_m}} \right\|_1} \le {\left\| {{u_1} \cdots {u_{m - 1}}} \right\|_{1/\sum\limits_{i = 1}^{m - 1} {\frac{1}{{{p_i}}}} }}{\left\| {{u_m}} \right\|_{{p_m}}}\\\le& {\left( {{{\left\| {u_1^{1/\sum\limits_{i = 1}^{m - 1} {\frac{1}{{{p_i}}}} }} \right\|}_{{p_1}\sum\limits_{i = 1}^{m - 1} {\frac{1}{{{p_i}}}} }} \cdots {{\left\| {u_{m - 1}^{1/\sum\limits_{i = 1}^{m - 1} {\frac{1}{{{p_i}}}} }} \right\|}_{{p_{m - 1}}\sum\limits_{i = 1}^{m - 1} {\frac{1}{{{p_i}}}} }}} \right)^{\sum\limits_{i = 1}^{m - 1} {\frac{1}{{{p_i}}}} }}{\left\| {{u_m}} \right\|_{{p_m}}}\\= &{\left\| {{u_1}} \right\|_{{p_1}}} \cdots {\left\| {{u_{m - 1}}} \right\|_{{p_{m - 1}}}}{\left\| {{u_m}} \right\|_{{p_m}}}.\end{align*}
另解:利用n元的Holder不等式
\prod\limits_{i = 1}^m {x_i^{{\theta _i}}} \le \sum\limits_{i = 1}^m {{\theta _i}{x_i}} ,\quad \text{其中}\sum\limits_{i = 1}^m {{\theta _i}} = 1,{\theta _i} \ge 0.
取{x_i} = \frac{{{{\left| {{u_i}} \right|}^{{p_i}}}}}{{\left\| {{u_i}} \right\|_{{p_i}}^{{p_i}}}},{\theta _i} = \frac{1}{{{p_i}}}再积分即可.
证明1 < \iiint\limits_{{{\left[ {0,1} \right]}^3}} {\left( {\cos \left( {xyz} \right) + \sin \left( {xyz} \right)} \right)dxdydz} < \sqrt 2 .
证.注意到1 < \cos \left( {xyz} \right) + \sin \left( {xyz} \right) = \sqrt 2 \sin \left( {xyz + \frac{\pi }{4}} \right) < \sqrt 2 即可.
证明
{\left\{ {{{\int_a^b {dx\left[ {\int_c^d {f\left( {x,y} \right)dy} } \right]} }^2}} \right\}^{1/2}} \le \int_c^d {dy{{\left[ {\int_a^b {{f^2}\left( {x,y} \right)dx} } \right]}^{1/2}}} ,
其中f是连续函数.
证.利用Cauchy-Schwarz不等式我们有
\begin{align*}&{\left\{ {\int_c^d {dy{{\left[ {\int_a^b {{f^2}\left( {x,y} \right)dx} } \right]}^{1/2}}} } \right\}^2}\\= &\int_c^d {dy{{\left[ {\int_a^b {{f^2}\left( {x,y} \right)dx} } \right]}^{1/2}}} \cdot \int_c^d {dz{{\left[ {\int_a^b {{f^2}\left( {x,z} \right)dx} } \right]}^{1/2}}} \\\ge& \int_c^d {dy} \int_c^d {dz} \int_a^b {f\left( {x,y} \right)f\left( {x,z} \right)dx} = {\int_a^b {dx\left[ {\int_c^d {f\left( {x,y} \right)dy} } \right]} ^2}.\end{align*}
谢惠民一道全微分题
前几天徐半仙问了我谢惠民下册P325页上一道难度稍大的全微分题目,利用今晚美好的独处时间(笑哭),做了下,解答如下:
对于以下一阶微分形式\omega ,求函数M(x,y)\neq0, 使得在适当的区域内M\omega 为全微分,并求其原函数:
(1) \displaystyle \omega = \left[ { - y\sqrt {{x^2} + {y^2} + 1} - x\left( {{x^2} + {y^2}} \right)} \right]dx + \left[ {x\sqrt {{x^2} + {y^2} + 1} - y\left( {{x^2} + {y^2}} \right)} \right]dy;
(2) \displaystyle \omega = x\left[ {{{\left( {ay + bx} \right)}^3} + a{y^3}} \right]dx + y\left[ {{{\left( {ay + bx} \right)}^3} + b{x^3}} \right]dy.
解:(1)取M = \frac{1}{{\left( {{x^2} + {y^2}} \right)\sqrt {{x^2} + {y^2} + 1} }},我们有
M\omega = \left( { - \frac{y}{{{x^2} + {y^2}}} - \frac{x}{{\sqrt {{x^2} + {y^2} + 1} }}} \right)dx + \left( {\frac{x}{{{x^2} + {y^2}}} - \frac{y}{{\sqrt {{x^2} + {y^2} + 1} }}} \right)dy.
则有P = - \frac{y}{{{x^2} + {y^2}}} - \frac{x}{{\sqrt {{x^2} + {y^2} + 1} }},Q = \frac{x}{{{x^2} + {y^2}}} - \frac{y}{{\sqrt {{x^2} + {y^2} + 1} }},且\frac{{\partial P}}{{\partial y}} = \frac{{{y^2} - {x^2}}}{{{{\left( {{x^2} + {y^2}} \right)}^2}}} + \frac{{xy}}{{{{\left( {{x^2} + {y^2} + 1} \right)}^{3/2}}}} = \frac{{\partial Q}}{{\partial x}}.
此时原函数为
\begin{align*}\varphi \left( {x,y} \right) = &\int_{{x_0}}^x {P\left( {x,{y_0}} \right)dx} + \int_{{y_0}}^y {Q\left( {x,y} \right)dy} + C'\\= &\int_{{x_0}}^x {\left( { - \frac{{{y_0}}}{{{x^2} + y_0^2}} - \frac{x}{{\sqrt {{x^2} + y_0^2 + 1} }}} \right)dx} + \int_{{y_0}}^y {\left( {\frac{x}{{{x^2} + {y^2}}} - \frac{y}{{\sqrt {{x^2} + {y^2} + 1} }}} \right)dy} + C'\\= &\left( { - \arctan \frac{x}{{{y_0}}} - \sqrt {{x^2} + y_0^2 + 1} + \arctan \frac{{{x_0}}}{{{y_0}}} + \sqrt {x_0^2 + y_0^2 + 1} } \right)\\&+ \left( {\arctan \frac{y}{x} - \sqrt {{x^2} + {y^2} + 1} - \arctan \frac{{{y_0}}}{x} + \sqrt {{x^2} + y_0^2 + 1} } \right) + C'\\=& \arctan \frac{y}{x} - \sqrt {{x^2} + {y^2} + 1} + C.\end{align*}
值得一提的是:本题的积分因子是通过Wolfram Alpha求解出ODE,然后分别对x,y求偏导得来的.
(2)丁同仁书上一定理:
齐次方程P(x,y)dx+Q(x,y)dy=0有积分因子M=\frac{1}{xP+yQ}.
定理的证明:作变换y=ux,则由P\left( {x,y} \right)dx + Q\left( {x,y} \right)dy = 0是齐次方程,我们有P\left( {x,ux} \right)dx + Q\left( {x,ux} \right)\left( {udx + xdu} \right) = \left[ {{x^m}P\left( {1,u} \right) + u{x^m}Q\left( {1,u} \right)} \right]dx + {x^{m + 1}}Q\left( {1,u} \right)du = 0.
方程两边同乘\frac{1}{{xP + yQ}} = \frac{1}{{{x^{m + 1}}\left[ {P\left( {1,u} \right) + uQ\left( {1,u} \right)} \right]}},则有
\frac{1}{x}dx + \frac{{Q\left( {1,u} \right)}}{{P\left( {1,u} \right) + uQ\left( {1,u} \right)}}du = 0.显然此方程为全微分方程.证毕.
取M = \frac{1}{{xP + yQ}} = \frac{1}{{\left( {{x^2} + {y^2}} \right){{\left( {ay + bx} \right)}^3} + {x^2}{y^2}\left( {ay + bx} \right)}}.
则有
P' = \frac{{x{{\left( {ay + bx} \right)}^3} + ax{y^3}}}{{\left( {{x^2} + {y^2}} \right){{\left( {ay + bx} \right)}^3} + {x^2}{y^2}\left( {ay + bx} \right)}},Q' = \frac{{y{{\left( {ay + bx} \right)}^3} + b{x^3}y}}{{\left( {{x^2} + {y^2}} \right){{\left( {ay + bx} \right)}^3} + {x^2}{y^2}\left( {ay + bx} \right)}}.
我猜此时一定成立\frac{{\partial P'}}{{\partial y}} = \frac{{\partial Q'}}{{\partial x}}.
事实上
\begin{align*}\frac{{\partial P'}}{{\partial y}} = & - 2xy{\left( {ay + bx} \right)^6} - 2{x^3}y{\left( {ay + bx} \right)^4} + \left( {5a{x^3}{y^2} + ax{y^4}} \right){\left( {ay + bx} \right)^3}\\& - 3{a^2}x{y^3}\left( {{x^2} + {y^2}} \right){\left( {ay + bx} \right)^2} + a{x^3}{y^4}\left( {ay + bx} \right) - {a^2}{x^3}{y^5}\\\frac{{\partial Q'}}{{\partial x}} = &- 2xy{\left( {ay + bx} \right)^6} - 2x{y^3}{\left( {ay + bx} \right)^4} + \left( {5b{x^2}{y^3} + b{x^4}y} \right){\left( {ay + bx} \right)^3}\\& - 3{b^2}{x^3}y\left( {{x^2} + {y^2}} \right){\left( {ay + bx} \right)^2} + b{x^4}{y^3}\left( {ay + bx} \right) - {b^2}{x^5}{y^3}.\end{align*}
于是
\begin{align*}\varphi \left( {x,y} \right) &= \int_{{x_0}}^x {P'\left( {x,{y_0}} \right)dx} + \int_{{y_0}}^y {Q'\left( {x,y} \right)dy} + C'\\&= \frac{1}{2}\ln \left[ {\left( {{x^2} + {y^2}} \right){{\left( {ay + bx} \right)}^3} + {x^2}{y^2}\left( {ay + bx} \right)} \right] - \frac{3}{2}\ln \left( {ay + bx} \right) + C.\end{align*}
事实上,我们还可取M = \frac{1}{{{{\left( {ay + bx} \right)}^3}}},由此得到
\varphi \left( {x,y} \right) = \frac{{{x^2} + {y^2}}}{2} + \frac{{{x^2}{y^2}}}{{2{{\left( {ay + bx} \right)}^2}}} + C.
谢惠民上册的一道不等式题
往事如烟!
谢上P9的一道不等式题,以前写过,但文件丢失,先前的解答难以回忆起,现在重新给出解答。
用向前-向后数学归纳法证明:设\displaystyle 0<x_i\leq \frac12,i=1,2,\cdots,n,则
\frac{{\prod\limits_{i = 1}^n {{x_i}} }}{{{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^n}}} \le \frac{{\prod\limits_{i = 1}^n {\left( {1 - {x_i}} \right)} }}{{{{\left[ {\sum\limits_{i = 1}^n {\left( {1 - {x_i}} \right)} } \right]}^n}}}.
(这个不等式是由在美国数学界有重大影响的华裔数学家樊畿(Fan Ky)得到的,关于它的许多研究和推广见[30].)
首先,
\frac{{{{\left[ {\sum\limits_{i = 1}^n {\left( {1 - {x_i}} \right)} } \right]}^n}}}{{{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^n}}} \le \frac{{\prod\limits_{i = 1}^n {\left( {1 - {x_i}} \right)} }}{{\prod\limits_{i = 1}^n {{x_i}} }} \Leftrightarrow {\left[ {\frac{n}{{\sum\limits_{i = 1}^n {{x_i}} }} - 1} \right]^n} \le \prod\limits_{i = 1}^n {\left( {\frac{1}{{{x_i}}} - 1} \right)} .
当n=2时,即证
\left( {\frac{1}{{{x_1}}} - 1} \right)\left( {\frac{1}{{{x_2}}} - 1} \right) \ge {\left[ {\frac{2}{{{x_1} + {x_2}}} - 1} \right]^2}.
展开得
\frac{1}{{{x_1}{x_2}}} - \frac{1}{{{x_1}}} - \frac{1}{{{x_2}}} + 1 \ge \frac{4}{{{{\left( {{x_1} + {x_2}} \right)}^2}}} - \frac{4}{{{x_1} + {x_2}}} + 1.
等价于证明
\frac{1}{{{x_1}{x_2}}} - \frac{4}{{{{\left( {{x_1} + {x_2}} \right)}^2}}} \ge \frac{1}{{{x_1}}} + \frac{1}{{{x_2}}} - \frac{4}{{{x_1} + {x_2}}} \Leftrightarrow \frac{{{{\left( {{x_1} - {x_2}} \right)}^2}}}{{{{\left( {{x_1} + {x_2}} \right)}^2}{x_1}{x_2}}} \ge \frac{{{{\left( {{x_1} - {x_2}} \right)}^2}}}{{\left( {{x_1} + {x_2}} \right){x_1}{x_2}}}.
注意到x_1+x_2\leq 1,上式显然成立.
从n=2的已知情况出发,可以得到如下n=4时的情形:
\begin{align*}&\prod\limits_{i = 1}^4 {\left( {\frac{1}{{{x_i}}} - 1} \right)} = \prod\limits_{i = 1}^2 {\left( {\frac{1}{{{x_i}}} - 1} \right)} \cdot \prod\limits_{i = 3}^4 {\left( {\frac{1}{{{x_i}}} - 1} \right)} \ge {\left[ {\frac{2}{{\sum\limits_{i = 1}^2 {{x_i}} }} - 1} \right]^2}{\left[ {\frac{2}{{\sum\limits_{i = 3}^4 {{x_i}} }} - 1} \right]^2}\\= &{\left[ {\left( {\frac{1}{{\frac{1}{2}\sum\limits_{i = 1}^2 {{x_i}} }} - 1} \right)\left( {\frac{1}{{\frac{1}{2}\sum\limits_{i = 3}^4 {{x_i}} }} - 1} \right)} \right]^2} \le {\left[ {{{\left( {\frac{2}{{\frac{1}{2}\sum\limits_{i = 1}^2 {{x_i}} + \frac{1}{2}\sum\limits_{i = 3}^4 {{x_i}} }} - 1} \right)}^2}} \right]^2} = {\left[ {\frac{4}{{\sum\limits_{i = 1}^4 {{x_i}} }} - 1} \right]^4}.\end{align*}
同样可知,若n=2^k时不等式已成立,则可得到n=2^{k+1}时的不等式
\begin{align*}&\prod\limits_{i = 1}^{{2^{k + 1}}} {\left( {\frac{1}{{{x_i}}} - 1} \right)} = \prod\limits_{i = 1}^{{2^k}} {\left( {\frac{1}{{{x_i}}} - 1} \right)} \cdot \prod\limits_{i = {2^k} + 1}^{{2^{k + 1}}} {\left( {\frac{1}{{{x_i}}} - 1} \right)} \ge {\left[ {\frac{{{2^k}}}{{\sum\limits_{i = 1}^{{2^k}} {{x_i}} }} - 1} \right]^{{2^k}}}{\left[ {\frac{{{2^k}}}{{\sum\limits_{i = {2^k} + 1}^{{2^{k + 1}}} {{x_i}} }} - 1} \right]^{{2^k}}}\\= & {\left[ {\left( {\frac{1}{{\frac{1}{{{2^k}}}\sum\limits_{i = 1}^{{2^k}} {{x_i}} }} - 1} \right)\left( {\frac{1}{{\frac{1}{{{2^k}}}\sum\limits_{i = {2^k} + 1}^{{2^{k + 1}}} {{x_i}} }} - 1} \right)} \right]^{{2^k}}} \le {\left[ {{{\left( {\frac{2}{{\frac{1}{{{2^k}}}\sum\limits_{i = 1}^{{2^k}} {{x_i}} + \frac{1}{{{2^k}}}\sum\limits_{i = {2^k} + 1}^{{2^{k + 1}}} {{x_i}} }} - 1} \right)}^2}} \right]^{{2^k}}} = {\left[ {\frac{{{2^{k + 1}}}}{{\sum\limits_{i = 1}^{{2^{k + 1}}} {{x_i}} }} - 1} \right]^{{2^{k + 1}}}}.\end{align*}
这样就证明了当n为2的所有方幂时平均值不等式已成立.这是“向前”部分.
第二步要证明,当平均值不等式对某个n>2成立时,则它对n-1也一定成立.这是证明中的“向后”部分.写出
\begin{align*}&{\left[ {\frac{{n - 1}}{{\sum\limits_{i = 1}^{n - 1} {{x_i}} }} - 1} \right]^{n - 1}} = {\left[ {\frac{n}{{\sum\limits_{i = 1}^{n - 1} {{x_i}} + \frac{1}{{n - 1}}\sum\limits_{i = 1}^{n - 1} {{x_i}} }} - 1} \right]^n} \cdot {\left[ {\frac{{n - 1}}{{\sum\limits_{i = 1}^{n - 1} {{x_i}} }} - 1} \right]^{ - 1}}\\\le &\prod\limits_{i = 1}^{n - 1} {\left( {\frac{1}{{{x_i}}} - 1} \right)} \cdot \left( {\frac{1}{{\frac{1}{{n - 1}}\sum\limits_{i = 1}^{n - 1} {{x_i}} }} - 1} \right) \cdot {\left[ {\frac{{n - 1}}{{\sum\limits_{i = 1}^{n - 1} {{x_i}} }} - 1} \right]^{ - 1}} = \prod\limits_{i = 1}^{n - 1} {\left( {\frac{1}{{{x_i}}} - 1} \right)} .\end{align*}
于是n-1时不等式也成立.合并以上向前和向后两部分,可见不等式对每个自然数n成立.
事实上,我们有
{\left[ {\frac{n}{{\sum\limits_{i = 1}^n {{x_i}} }} - 1} \right]^n} \le \prod\limits_{i = 1}^n {\left( {\frac{1}{{{x_i}}} - 1} \right)} \Leftrightarrow \frac{1}{n}\sum\limits_{i = 1}^n {\ln \left( {\frac{1}{{{x_i}}} - 1} \right)} \ge \ln \left( {\frac{1}{{\frac{1}{n}\sum\limits_{i = 1}^n {{x_i}} }} - 1} \right).结合函数y = \ln \left( {\frac{1}{x} - 1} \right)的凹凸性便可得证.
谢之题解16.2级数求和计算篇
大风起兮云飞扬,一生挚爱美娇娘.
爱情,本来就是勇敢者的游戏!
1.设已知\sum\limits_{n = 1}^\infty {{{\left( { - 1} \right)}^{n - 1}}{a_n}} = A,\sum\limits_{n = 1}^\infty {{a_{2n - 1}}} = B,证明: \sum\limits_{n = 1}^\infty {{a_n}} 收敛并求其和.
解:显然有
\sum\limits_{n = 1}^\infty {{a_n}} = 2\sum\limits_{n = 1}^\infty {{a_{2n - 1}}} - \sum\limits_{n = 1}^\infty {{{\left( { - 1} \right)}^{n - 1}}{a_n}} = 2B - A.
2.设P(x)=a_0+a_1x+\cdots+a_mx^m为m次多项式,求级数\sum\limits_{n = 0}^\infty {\frac{{P\left( n \right)}}{{n!}}}的和.
解:事实上,
\begin{align*}{b_k} &= \sum\limits_{n = 0}^\infty {\frac{{{n^k}}}{{n!}}} = \sum\limits_{n = 1}^\infty {\frac{{{n^{k - 1}}}}{{\left( {n - 1} \right)!}}} = \sum\limits_{n = 0}^\infty {\frac{{{{\left( {n + 1} \right)}^{k - 1}}}}{{n!}}} \\&= {b_{k - 1}} + C_{k - 1}^1{b_{k - 2}} + \cdots + C_{k - 1}^{k - 2}{b_1} + {b_0},\end{align*}
其中b_0=e.
由此得到的数叫Bell数,记为B_n,并且
B\left( x \right) = \sum\limits_{n = 0}^\infty {\frac{{B\left( n \right)}}{{n!}}{x^n}} = {e^{{e^x} - 1}}.
回到原题,我们有\sum\limits_{n = 0}^\infty {\frac{{P\left( n \right)}}{{n!}}} = e\sum\limits_{k = 0}^m {{a_k}{B_k}} .
3.求1 - \frac{{{2^3}}}{{1!}} + \frac{{{3^3}}}{{2!}} - \frac{{{4^3}}}{{3!}} + \cdots 的和.
解:事实上,
\begin{align*}{b_k} &= \sum\limits_{n = 0}^\infty {{{\left( { - 1} \right)}^n}\frac{{{n^k}}}{{n!}}} = \sum\limits_{n = 1}^\infty {{{\left( { - 1} \right)}^n}\frac{{{n^{k - 1}}}}{{\left( {n - 1} \right)!}}} = \sum\limits_{n = 0}^\infty {{{\left( { - 1} \right)}^{n+1}}\frac{{{{\left( {n + 1} \right)}^{k - 1}}}}{{n!}}} \\& =- {b_{k - 1}} - C_{k - 1}^1{b_{k - 2}} - \cdots - C_{k - 1}^{k - 2}{b_1} - {b_0},\end{align*}
其中b_0=1/e.因此b_1=-1/e,b_2=0,b_3=1/e.
因此
\begin{align*}& 1 - \frac{{{2^3}}}{{1!}} + \frac{{{3^3}}}{{2!}} - \frac{{{4^3}}}{{3!}} + \cdots = \sum\limits_{n = 0}^\infty {{{\left( { - 1} \right)}^n}\frac{{{{\left( {n + 1} \right)}^3}}}{{n!}}} \\=& {b_3} + 3{b_2} + 3{b_1} + {b_0} = - \frac{1}{e}.\end{align*}
4.求下列级数的和:(1) \sum\limits_{n = 1}^\infty {\arctan \frac{1}{{2{n^2}}}} ; (2) \sum\limits_{n = 1}^\infty {\arctan \frac{2}{{{n^2}}}} .
解:事实上
\sum\limits_{n = 1}^\infty {\arctan \frac{1}{{2{n^2}}}} = \sum\limits_{n = 1}^\infty {\left( {\arctan \frac{1}{{2n - 1}} - \arctan \frac{1}{{2n + 1}}} \right)} = \frac{\pi }{4}.
而
\sum\limits_{n = 1}^\infty {\arctan \frac{2}{{{n^2}}}} = \sum\limits_{n = 1}^\infty {\left( {\arctan \frac{1}{{n - 1}} - \arctan \frac{1}{{n + 1}}} \right)} = \frac{\pi }{2} + \frac{\pi }{4} = \frac{{3\pi }}{4}.
5.设a>1,求\sum\limits_{n = 0}^\infty {\frac{{{2^n}}}{{{a^{{2^n}}} + 1}}}的和.
解:事实上
\begin{align*}\sum\limits_{n = 0}^\infty {\frac{{{2^n}}}{{{a^{{2^n}}} + 1}}} &= \frac{1}{{a + 1}} + \sum\limits_{n = 1}^\infty {\frac{{{2^n}}}{{{a^{{2^n}}} + 1}}} = \frac{1}{{a + 1}} - \frac{1}{{a - 1}} + \frac{1}{{a + 1}} + \sum\limits_{n = 1}^\infty {\frac{{{2^n}}}{{{a^{{2^n}}} + 1}}} \\&= \frac{1}{{a + 1}} - \frac{2}{{{a^2} - 1}} + \sum\limits_{n = 1}^\infty {\frac{{{2^n}}}{{{a^{{2^n}}} + 1}}} = \frac{1}{{a + 1}} - \frac{{{2^2}}}{{{a^{{2^2}}} - 1}} + \sum\limits_{n = 2}^\infty {\frac{{{2^n}}}{{{a^{{2^n}}} + 1}}} \\&= \frac{1}{{a + 1}} - \mathop {\lim }\limits_{n \to \infty } \frac{{{2^{n + 1}}}}{{{a^{{2^{n + 1}}}} - 1}} = \frac{1}{{a + 1}}.\end{align*}
6.求1 + \frac{1}{3} - \frac{1}{5} - \frac{1}{7} + \frac{1}{9} + \frac{1}{{11}} - \cdots 的和.
解:
\begin{align*}&\sum\limits_{n = 1}^\infty {\left( {\frac{1}{{8n - 7}} + \frac{1}{{8n - 5}} - \frac{1}{{8n - 3}} - \frac{1}{{8n - 1}}} \right)} = \sum\limits_{n = 1}^\infty {\int_0^1 {\left( {{x^{8n - 8}} + {x^{8n - 6}} - {x^{8n - 4}} - {x^{8n - 2}}} \right)} } \\=& \int_0^1 {\sum\limits_{n = 1}^\infty {\left( {{x^{8n - 8}} + {x^{8n - 6}} - {x^{8n - 4}} - {x^{8n - 2}}} \right)} dx} = \int_0^1 {\frac{{1 + {x^2} - {x^4} - {x^6}}}{{1 - {x^8}}}dx} \\= &\left. {\frac{{\arctan \left( {1 + \sqrt 2 x} \right) - \arctan \left( {1 - \sqrt 2 x} \right)}}{{\sqrt 2 }}} \right|_0^1 = \frac{\pi }{{2\sqrt 2 }}.\end{align*}
7.求1 - \frac{1}{7} + \frac{1}{9} - \frac{1}{{15}} + \cdots 的和.
解:
\begin{align*}&\sum\limits_{n = 1}^\infty {\left( {\frac{1}{{8n - 7}} - \frac{1}{{8n - 1}}} \right)} = \sum\limits_{n = 1}^\infty {\int_0^1 {\left( {{x^{8n - 8}} - {x^{8n - 2}}} \right)} } \\=& \int_0^1 {\sum\limits_{n = 1}^\infty {\left( {{x^{8n - 8}} - {x^{8n - 2}}} \right)} dx} = \int_0^1 {\frac{{1 - {x^6}}}{{1 - {x^8}}}dx} \\= &\left. {\frac{{2\arctan x + \sqrt 2 \arctan \left( {1 + \sqrt 2 x} \right) - \arctan \left( {1 - \sqrt 2 x} \right)}}{4}} \right|_0^1 = \frac{{\sqrt 2 + 1}}{8}\pi .\end{align*}
8.求1 - \frac{1}{4} + \frac{1}{7} - \frac{1}{{10}} + \cdots 的和.
解:
\begin{align*}&\sum\limits_{n = 1}^\infty {\left( {\frac{1}{{6n - 5}} - \frac{1}{{6n - 2}}} \right)} = \sum\limits_{n = 1}^\infty {\int_0^1 {\left( {{x^{6n - 6}} - {x^{6n - 3}}} \right)} } \\= &\int_0^1 {\sum\limits_{n = 1}^\infty {\left( {{x^{6n - 6}} - {x^{6n - 3}}} \right)} dx} = \int_0^1 {\frac{{1 - {x^3}}}{{1 - {x^6}}}dx} = \int_0^1 {\frac{1}{{1 + {x^3}}}dx} \\=& \left. {\left( { - \frac{1}{6}\ln \left( {{x^2} - x + 1} \right) + \frac{1}{3}\ln \left( {x + 1} \right) + \frac{{\arctan \frac{{2x - 1}}{{\sqrt 3 }}}}{{\sqrt 3 }}} \right)} \right|_0^1 = \frac{{\sqrt 3 \pi + 3\ln 2}}{9}.\end{align*}
9.设{a_n} = 1 + \frac{1}{2} + \cdots + \frac{1}{n},n = 1,2, \cdots ,求\sum\limits_{n = 1}^\infty {\frac{{{a_n}}}{{n\left( {n + 1} \right)}}} 的和.
解:
\begin{align*}&\sum\limits_{n = 1}^\infty {\frac{{{a_n}}}{{n\left( {n + 1} \right)}}} = \sum\limits_{n = 1}^\infty {\frac{{1 + \frac{1}{2} + \cdots + \frac{1}{n}}}{{n\left( {n + 1} \right)}}} \\=&\sum\limits_{n = 1}^\infty {\left( {\frac{{1 + \frac{1}{2} + \cdots + \frac{1}{n}}}{n} - \frac{{1 + \frac{1}{2} + \cdots + \frac{1}{{n + 1}}}}{{n + 1}}} \right)} + \sum\limits_{n = 1}^\infty {\frac{1}{{{{\left( {n + 1} \right)}^2}}}} \\= & 1 - \mathop {\lim }\limits_{n \to \infty } \frac{{1 + \frac{1}{2} + \cdots + \frac{1}{{n + 1}}}}{{n + 1}} + \left( {\frac{{{\pi ^2}}}{6} - 1} \right) = \frac{{{\pi ^2}}}{6} - \mathop {\lim }\limits_{n \to \infty } \frac{{\frac{1}{{n + 2}}}}{1} = \frac{{{\pi ^2}}}{6}.\end{align*}
10.求\sum\limits_{n = 0}^\infty {\left( {\frac{1}{{4n + 1}} + \frac{1}{{4n + 3}} - \frac{1}{{2n + 2}}} \right)} 的和.
解:
\begin{align*}&\sum\limits_{n = 0}^\infty {\left( {\frac{1}{{4n + 1}} + \frac{1}{{4n + 3}} - \frac{1}{{2n + 2}}} \right)} = \sum\limits_{n = 0}^\infty {\int_0^1 {\left( {{x^{4n}} + {x^{4n + 2}} - {x^{2n + 1}}} \right)} } \\= &\int_0^1 {\sum\limits_{n = 0}^\infty {\left( {{x^{4n}} + {x^{4n + 2}} - {x^{2n + 1}}} \right)} dx} = \int_0^1 {\left( {\frac{{1 + {x^2}}}{{1 - {x^4}}} - \frac{x}{{1 - {x^2}}}} \right)dx} \\=& \int_0^1 {\frac{1}{{1 + x}}dx} = \ln 2.\end{align*}
11.求1 - \frac{1}{4} + \frac{1}{6} - \frac{1}{9} + \frac{1}{{11}} - \frac{1}{{14}} + \cdots 的和.
解:
\begin{align*}&\sum\limits_{n = 1}^\infty {\left( {\frac{1}{{5n - 4}} - \frac{1}{{5n - 1}}} \right)} = \sum\limits_{n = 1}^\infty {\int_0^1 {\left( {{x^{5n - 5}} - {x^{5n - 2}}} \right)dx} } = \int_0^1 {\sum\limits_{n = 1}^\infty {\left( {{x^{5n - 5}} - {x^{5n - 2}}} \right)} dx} \\=& \int_0^1 {\frac{{1 - {x^3}}}{{1 - {x^5}}}dx} = \int_0^1 {\left( {\frac{{\left( {5 - \sqrt 5 } \right)/10}}{{{x^2} + \frac{{\sqrt 5 + 1}}{2}x + 1}} + \frac{{\left( {5 + \sqrt 5 } \right)/10}}{{{x^2} + \frac{{ - \sqrt 5 + 1}}{2}x + 1}}} \right)dx} \\=& \left. {\left[ {\frac{{5 - \sqrt 5 }}{{10}}\sqrt {\frac{{10 + 2\sqrt 5 }}{5}} \arctan \frac{{4x + \sqrt 5 + 1}}{{\sqrt {10 - 2\sqrt 5 } }} + \frac{{5 + \sqrt 5 }}{5}\sqrt {\frac{2}{{5 + \sqrt 5 }}} \arctan \frac{{4x - \sqrt 5 + 1}}{{\sqrt {10 + 2\sqrt 5 } }}} \right]} \right|_0^1 \\=& \frac{{\sqrt {25 + 10\sqrt 5 } }}{{25}}\pi .\end{align*}
12.求\frac{{{x^3}}}{{3!}} + \frac{{{x^9}}}{{9!}} + \frac{{{x^{15}}}}{{15!}} + \cdots 的和函数.
解:事实上,方程\omega^3=1有三个根1,{ - \frac{1}{2} + \frac{{\sqrt 3 i}}{2}},{ - \frac{1}{2} - \frac{{\sqrt 3 i}}{2}}.利用\sinh便可得到所需函数
\begin{align*}&\frac{{\sinh x + \sinh \left( { - \frac{1}{2} + \frac{{\sqrt 3 i}}{2}} \right)x + \sinh \left( { - \frac{1}{2} - \frac{{\sqrt 3 i}}{2}} \right)x}}{3}\\= & - \frac{2}{3}\sinh \frac{x}{2}\cos \frac{{\sqrt 3 x}}{2} + \frac{{\sinh x}}{3} = \frac{{{x^3}}}{{3!}} + \frac{{{x^9}}}{{9!}} + \frac{{{x^{15}}}}{{15!}} + \cdots .\end{align*}
我们还有
\begin{align*}&{\frac{{\sin x +\sin \left( { - \frac{1}{2} + \frac{{\sqrt 3 i}}{2}} \right)x + \sin \left( { - \frac{1}{2} - \frac{{\sqrt 3 i}}{2}} \right)x}}{{ - 3}}}\\= &\frac{2}{3}\sin \frac{x}{2}\cosh \frac{{\sqrt 3 x}}{2} - \frac{{\sin x}}{3} = \frac{{{x^3}}}{{3!}} - \frac{{{x^9}}}{{9!}} + \frac{{{x^{15}}}}{{15!}} - \frac{{{x^{21}}}}{{21!}} + \cdots .\end{align*}
13.求\sum\limits_{n = 1}^\infty {\frac{{{{\left[ {\left( {n - 1} \right)!} \right]}^2}}}{{\left( {2n} \right)!}}{{\left( {2x} \right)}^{2n}}}的和函数.
解:在|x|<1上对S(x)逐项求导,知S'\left( x \right) = 2\sum\limits_{n = 1}^\infty {\frac{{{{\left[ {\left( {n - 1} \right)!} \right]}^2}}}{{\left( {2n - 1} \right)!}}{{\left( {2x} \right)}^{2n - 1}}} ,且S''\left( x \right) = 4\sum\limits_{n = 1}^\infty {\frac{{{{\left[ {\left( {n - 1} \right)!} \right]}^2}}}{{\left( {2n - 2} \right)!}}{{\left( {2x} \right)}^{2n - 2}}} .由此可得(1-x^2)S''(x)-xS'(x)=4.在两端乘以{(1-x^2)}^{-1/2},我们有
{\left( {\sqrt {1 - {x^2}} S'\left( x \right)} \right)^\prime } = \frac{4}{{\sqrt {1 - {x^2}} }},故
S\left( x \right) = \frac{{4\arcsin x}}{{\sqrt {1 - {x^2}} }} + \frac{1}{{\sqrt {1 - {x^2}} }},\quad \left| x \right| < 1.
14.求\sum\limits_{n = 1}^\infty {\frac{{{x^{n + 1}}}}{{\left( {1 - {x^n}} \right)\left( {1 - {x^{n + 1}}} \right)}}} 的和函数.
解:注意到
\begin{align*}&\left( {1 - \frac{1}{x}} \right)\sum\limits_{n = 1}^\infty {\frac{{{x^{n + 1}}}}{{\left( {1 - {x^n}} \right)\left( {1 - {x^{n + 1}}} \right)}}} \\=& \sum\limits_{n = 1}^\infty {\frac{{{x^{n + 1}}}}{{\left( {1 - {x^n}} \right)\left( {1 - {x^{n + 1}}} \right)}}} - \sum\limits_{n = 1}^\infty {\frac{{{x^n}}}{{\left( {1 - {x^n}} \right)\left( {1 - {x^{n + 1}}} \right)}}} \\= &\sum\limits_{n = 1}^\infty {\frac{{{x^{n + 1}} - {x^n}}}{{\left( {1 - {x^n}} \right)\left( {1 - {x^{n + 1}}} \right)}}} = \sum\limits_{n = 1}^\infty {\left( {\frac{1}{{1 - {x^{n + 1}}}} - \frac{1}{{1 - {x^n}}}} \right)} \\=& \mathop {\lim }\limits_{n \to \infty } \frac{1}{{1 - {x^{n + 1}}}} - \frac{1}{{1 - x}} = \begin{cases}\frac{1}{{x - 1}},&\left| x \right| > 1\\\frac{x}{{x - 1}},&\left| x \right| < 1\end{cases} .\end{align*}
因此
\sum\limits_{n = 1}^\infty {\frac{{{x^{n + 1}}}}{{\left( {1 - {x^n}} \right)\left( {1 - {x^{n + 1}}} \right)}}} = \begin{cases}\frac{x}{{{{\left( {x - 1} \right)}^2}}}, &\left| x \right| > 1\\\frac{{{x^2}}}{{{{\left( {x - 1} \right)}^2}}}, &\left| x \right| < 1\end{cases} .
15.设\sum\limits_{n = 1}^\infty {\frac{1}{{{a_n}}}} 为发散的正项级数, x>0,求\sum\limits_{n = 1}^\infty {\frac{{{a_1}{a_2} \cdots {a_n}}}{{\left( {{a_2} + x} \right) \cdots \left( {{a_{n + 1}} + x} \right)}}} 的和函数.
解:首先,
\begin{align*}&\sum\limits_{n = 1}^\infty {\frac{{{a_1}{a_2} \cdots {a_n}}}{{\left( {{a_2} + x} \right) \cdots \left( {{a_{n + 1}} + x} \right)}}} \\=& \frac{{{a_1}}}{{{a_2} + x}} + \frac{1}{x}\sum\limits_{n = 2}^\infty {\left[ {\frac{{{a_1}{a_2} \cdots {a_n}}}{{\left( {{a_2} + x} \right) \cdots \left( {{a_n} + x} \right)}} - \frac{{{a_1}{a_2} \cdots {a_{n + 1}}}}{{\left( {{a_2} + x} \right) \cdots \left( {{a_{n + 1}} + x} \right)}}} \right]} \\=& \frac{{{a_1}}}{{{a_2} + x}} + \frac{1}{x}\left[ {\frac{{{a_1}{a_2}}}{{{a_2} + x}} - \mathop {\lim }\limits_{n \to \infty } \frac{{{a_1}{a_2} \cdots {a_{n + 1}}}}{{\left( {{a_2} + x} \right) \cdots \left( {{a_{n + 1}} + x} \right)}}} \right].\end{align*}
当n足够大时,1 + \frac{x}{{{a_{n + 1}}}} \sim {e^{x/{a_{n + 1}}}}.
因此{\left( {1 + \frac{x}{{{a_2}}}} \right) \cdots \left( {1 + \frac{x}{{{a_{n + 1}}}}} \right)}与\exp \left\{ {x\sum\limits_{n = 1}^\infty {\frac{1}{{{a_n}}}} } \right\}具有相同的收敛性,均发散,故
\mathop {\lim }\limits_{n \to \infty } \frac{{{a_1}{a_2} \cdots {a_{n + 1}}}}{{\left( {{a_2} + x} \right) \cdots \left( {{a_{n + 1}} + x} \right)}} = \mathop {\lim }\limits_{n \to \infty } \frac{{{a_1}}}{{\left( {1 + \frac{x}{{{a_2}}}} \right) \cdots \left( {1 + \frac{x}{{{a_{n + 1}}}}} \right)}} = 0.
从而
\sum\limits_{n = 1}^\infty {\frac{{{a_1}{a_2} \cdots {a_n}}}{{\left( {{a_2} + x} \right) \cdots \left( {{a_{n + 1}} + x} \right)}}} = \frac{{{a_1}}}{{{a_2} + x}} + \frac{{{a_1}{a_2}}}{{x\left( {{a_2} + x} \right)}} = \frac{{{a_1}}}{x}.
16.设x>1,求\frac{x}{{x + 1}} + \frac{{{x^2}}}{{\left( {x + 1} \right)\left( {{x^2} + 1} \right)}} + \frac{{{x^4}}}{{\left( {x + 1} \right)\left( {{x^2} + 1} \right)\left( {{x^4} + 1} \right)}} + \cdots 的和函数.
解:\begin{align*}I &= \left( {1 - \frac{1}{{x + 1}}} \right) + \frac{{{x^2}}}{{\left( {x + 1} \right)\left( {{x^2} + 1} \right)}} + \frac{{{x^4}}}{{\left( {x + 1} \right)\left( {{x^2} + 1} \right)\left( {{x^4} + 1} \right)}} + \cdots \\&= 1 + \left( { - \frac{1}{{x + 1}} + \frac{{{x^2}}}{{\left( {x + 1} \right)\left( {{x^2} + 1} \right)}}} \right) + \frac{{{x^4}}}{{\left( {x + 1} \right)\left( {{x^2} + 1} \right)\left( {{x^4} + 1} \right)}} + \cdots \\&= 1 - \frac{1}{{\left( {x + 1} \right)\left( {{x^2} + 1} \right)}} + \frac{{{x^4}}}{{\left( {x + 1} \right)\left( {{x^2} + 1} \right)\left( {{x^4} + 1} \right)}} + \cdots \\&= 1 - \frac{1}{{\left( {x + 1} \right)\left( {{x^2} + 1} \right)\left( {{x^4} + 1} \right)}} + \cdots \\&= \cdots = 1 - \mathop {\lim }\limits_{n \to \infty } \frac{1}{{\left( {x + 1} \right)\left( {{x^2} + 1} \right) \cdots \left( {{x^{{2^{n - 1}}}} + 1} \right)}} = 1.\end{align*}