Eufisky - The lost book

翻译论文001:Wallis不等式的最佳界

Wallis不等式的最佳界

CHAO-PING   CHEN   AND   FENG   QI

(Communicated by Carmen C. Chicone)

摘要:对于所有自然数$n$,将$n!!$记为双阶乘.则有:\[\frac{1}{{\sqrt {\pi \left( {n + \frac{4}{\pi } - 1} \right)} }} \le \frac{{\left( {2n - 1} \right)!!}}{{\left( {2n} \right)!!}} < \frac{1}{{\sqrt {\pi \left( {n + \frac{1}{4}} \right)} }}.\]其中的常数$\frac{4}{\pi}-1$和$\frac{1}{4}$是最佳可能值。从这篇论文可知,著名的Wallis不等式被加强了。

1.介绍

对任一给定的正整数$m$,双阶乘可以记作\[\left( {2m} \right)!! = \prod\limits_{i = 1}^m {\left( {2i} \right)}  \text{and}   \left( {2m - 1} \right)!! = \prod\limits_{i = 1}^m {\left( {2i - 1} \right)}. \]令\begin{align}{P_n} = \frac{{\left( {2n - 1} \right)!!}}{{\left( {2n} \right)!!}}.\tag{1}\end{align}则我们对$n>1$有\[\frac{1}{{2\sqrt n }} < \frac{{\sqrt 2 }}{{\sqrt {\left( {2n + 1} \right)\pi } }} < {P_n} < \frac{2}{{\sqrt {\left( {4n + 1} \right)\pi } }} < \frac{1}{{\sqrt {3n + 1} }} < \frac{1}{{\sqrt {2n + 1} }} < \frac{1}{{\sqrt {2n} }}.\]此不等式在【18,p.103】中被称为Wallis不等式。

$\text{(2)}$中$P_n$的上下界频繁被数学家引用和应用。$\text{(2)}$中最小上界$\frac{2}{\sqrt{(4n+1)\pi}}$和最大下界$\frac{\sqrt{2}}{\sqrt{(2n+1)\pi}}$,即是,不等式\[\frac{{\sqrt 2 }}{{\sqrt {\left( {2n + 1} \right)\pi } }} < {P_n} < \frac{2}{{\sqrt {\left( {4n + 1} \right)\pi } }}\tag{3}\]是由N. D. Kazarino得到的 。见【16,pp.47-48和pp.65-67】。我们可以把不等式$\text{(3)}$改写成\[\frac{1}{{\sqrt {\pi \left( {n + \frac{1}{2}} \right)} }} < {P_n} < \frac{2}{{\sqrt {\pi \left( {n + \frac{1}{4}} \right)} }}\tag{4}\],对$n\in \mathbb{N}$均成立。

公式$\text{(4)}$使用的重要性是为了通过在$\text{(6)}$中取$x=\frac{\pi}{2}$给出一个特殊情形下的Wallis公式(见4,p.259):\[\frac{\pi }{2} = \mathop {\lim }\limits_{n \to \infty } \frac{{{{\left[ {\left( {2n} \right)!!} \right]}^2}}}{{{{\left[ {\left( {2n - 1} \right)!!} \right]}^2}\left( {2n + 1} \right)}} = \prod\limits_{n = 1}^\infty  {\left[ {\frac{{{{\left( {2n} \right)}^2}}}{{\left( {2n - 1} \right)\left( {2n + 1} \right)}}} \right]} .\]Wallis公式最初是伴随着正弦函数的无穷乘积展开式而来的(见【12,23】):\[\sin x = x\prod\limits_{n = 1}^\infty  {\left( {1 - \frac{{{x^2}}}{{{\pi ^2}{n^2}}}} \right)} .\tag{6}\]Wallis公式也可以表示成\[\frac{\pi }{2} = {\left[ {{4^{\zeta \left( 0 \right)}}{e^{ - \zeta '\left( 0 \right)}}} \right]^2};\]见【12】,其中$\zeta$是Riemann zeta 函数【11】。

Wallis公式的使用Hadamard乘积【10】从Riemann zeta 函数$\zeta(s)$,由$\zeta '\left( 0 \right)$得到的一个归功于Y. L. Yung的推导可以在【12】中被发现。Wallis公式也可以倒过来从没有使用Hadamard乘积而来的Wallis公式中得到$\zeta '\left( 0 \right)$的值【22】。

注意到Wallis正弦(余弦)公式【13,14】可表达为如下式子:

\begin{align*}\int_0^{\frac{\pi }{2}} {{{\sin }^n}xdx}  = \int_0^{\frac{\pi }{2}} {{{\cos }^n}xdx}  = \frac{{\sqrt \pi  \Gamma \left( {\frac{{n + 1}}{2}} \right)}}{{n\Gamma \left( {\frac{n}{2}} \right)}} = \left\{ \begin{array}{l}\frac{\pi }{2} \cdot \frac{{\left( {n - 1} \right)!!}}{{n!!}}&&n\text{为偶数时}\\\frac{{\left( {n - 1} \right)!!}}{{n!!}}&&n\text{为奇数时},\end{array} \right.\end{align*}

其中$\Gamma$是gamma函数。

涉及到$P_n$的不等式由第二作者他的合作者们在【21】中通过使用Tchebyshe 积分不等式得到。

阶乘和他们的连续性延拓充当了重要角色,比如,在组合数学,图论和特殊函数领域里。

为了了解到Wallis公式的更多信息,请参看【1,p.258】,【5,6,7】,【8,pp.17-28】,【15,p.468】,【17,pp.63-64】,和其中的参考文献部分。

在本论文中,我们将改善不等式$\text{(4)}$。更确切地说,我们将寻求两个最佳的可能常数值A和B使得双向不等式\[\frac{1}{{\sqrt {\pi \left( {n + A} \right)} }} \le {P_n} \le \frac{1}{{\sqrt {\pi \left( {n + B} \right)} }}\tag{9}\]对所有自然数$n$成立。换句话说,在$\text{(9)}$中的常数$A=\frac{4}{\pi}-1$和$B=\frac{1}{4}$不能分别被更小和更大的数取代。

2.引理

引理1.对$x>0$,我们有\[\frac{{2x + 1}}{{x\left( {4x + 1} \right)}} < \frac{{\Gamma '\left( {x + \frac{1}{2}} \right)}}{{\Gamma \left( {x + \frac{1}{2}} \right)}} - \frac{{\Gamma '\left( x \right)}}{{\Gamma \left( x \right)}},\tag{10}\]

\[{x^{b - a}}\frac{{\Gamma \left( {x + a} \right)}}{{\Gamma \left( {x + b} \right)}} = 1 + \frac{{\left( {a - b} \right)\left( {a + b - 1} \right)}}{{2x}} + O\left( {\frac{1}{{{x^2}}}} \right),x \to \infty .\tag{11}\]

不等式$\text{(10)}$的证明在【2,3,19】中已给出,渐近展开式$\text{(11)}$的证明可以从【9】和【20,p.378】中找到。也可以见【1,p.257】

备注1.在$\text{(10)}$中用$x+\frac12$取代$x$得到\[\frac{{4x + 4}}{{\left( {2x + 1} \right)\left( {4x + 3} \right)}} < \frac{{\Gamma '\left( {x + 1} \right)}}{{\Gamma \left( {x + 1} \right)}} - \frac{{\Gamma '\left( {x + \frac{1}{2}} \right)}}{{\Gamma \left( {x + \frac{1}{2}} \right)}}.\tag{12}\]

引理1.对$x>0$,我们有\[\frac{{\Gamma \left( {x + 1} \right)}}{{\Gamma \left( {x + \frac{1}{2}} \right)}} < \frac{{2x + 1}}{{\sqrt {4x + 3} }}.\]

证明.定义对正实数$x$,有:\[f(x)=\ln(2x+1)-\frac12\ln(4x+3)-\ln\Gamma(x+1)+\frac12\ln\Gamma(x+\frac12).\]对$f(x)$求导给出了\[f'\left( x \right) = \frac{2}{{2x + 1}} - \frac{2}{{4x + 3}} - \left[ {\frac{{\Gamma '\left( {x + 1} \right)}}{{\Gamma \left( {x + 1} \right)}} - \frac{{\Gamma '\left( {x + \frac{1}{2}} \right)}}{{\Gamma \left( {x + \frac{1}{2}} \right)}}} \right].\]利用$\text{(12)}$,我们得到\[f'\left( x \right) > \frac{2}{{2x + 1}} - \frac{2}{{4x + 3}} - \frac{{4x + 4}}{{\left( {2x + 1} \right)\left( {4x + 3} \right)}} = 0.\]因此,$f(x)$在$(0,\infty)$上是严格递增的且\[f(x)>f(0)=\frac12\ln\frac{\pi}{3},\],由此引出不等式$\text{(13)}$。

推论1.对于所有自然数$n$,我们有\[\frac{{\Gamma \left( {n + 1} \right)}}{{\Gamma \left( {n + \frac{1}{2}} \right)}} < \frac{{2n + 1}}{{\sqrt {4n + 3} }}.\tag{14}\]

推论2.数列\[\left\{ {{Q_n}} \right\}_{n = 1}^\infty \underline{\underline \triangle} \left\{ {{{\left[ {\frac{{\Gamma \left( {n + 1} \right)}}{{\Gamma \left( {n + \frac{1}{2}} \right)}}} \right]}^2} - n} \right\}_{n = 1}^\infty \]是严格递增的。

证明.不等式$Q_{n+1}<Q_n$等价于\[{\left[ {\frac{{\Gamma \left( {n + 2} \right)}}{{\Gamma \left( {n + \frac{3}{2}} \right)}}} \right]^2} - \left( {n + 1} \right) < {\left[ {\frac{{\Gamma \left( {n + 1} \right)}}{{\Gamma \left( {n + \frac{1}{2}} \right)}}} \right]^2} - n,\]利用$\Gamma(x+1)=x\Gamma(x)$可以改写成\[{\left[ {\frac{{n + 1}}{{n + \frac{1}{2}}} \cdot \frac{{\Gamma \left( {n + 1} \right)}}{{\Gamma \left( {n + \frac{1}{2}} \right)}}} \right]^2} - 1 < {\left[ {\frac{{\Gamma \left( {n + 1} \right)}}{{\Gamma \left( {n + \frac{1}{2}} \right)}}} \right]^2},\]\[\left[ {\frac{{{{\left( {n + 1} \right)}^2}}}{{{{\left( {n + \frac{1}{2}} \right)}^2}}} - 1} \right]{\left[ {\frac{{\Gamma \left( {n + 1} \right)}}{{\Gamma \left( {n + \frac{1}{2}} \right)}}} \right]^2} < 1,\]\[{\left[ {\frac{{\Gamma \left( {n + 1} \right)}}{{\Gamma \left( {n + \frac{1}{2}} \right)}}} \right]^2} < \frac{{{{\left( {n + \frac{1}{2}} \right)}^2}}}{{{{\left( {n + 1} \right)}^2} - {{\left( {n + \frac{1}{2}} \right)}^2}}},\]\[\frac{{\Gamma \left( {n + 1} \right)}}{{\Gamma \left( {n + \frac{1}{2}} \right)}} < \frac{{2n + 1}}{{\sqrt {4n + 3} }},\]此为不等式$\text{(14)}$中取$x=n$的特殊情形。因此,单调性的证明由此得到。

3.主要结果

现在我们给出本篇论文的主要结果。

定理1.对于所有自然数$n$,我们有\[\frac{1}{{\sqrt {\pi \left( {n + \frac{4}{\pi } - 1} \right)} }} \le \frac{{\left( {2n - 1} \right)!!}}{{\left( {2n} \right)!!}} < \frac{1}{{\sqrt {\pi \left( {n + \frac{1}{4}} \right)} }}.\tag{16}\]其中的常数$\frac{4}{\pi}-1$和$\frac14$是最佳可能值。

证明.因为\[\Gamma \left( {n + 1} \right) = n!,\Gamma \left( {n + \frac{1}{2}} \right) = \frac{{\left( {2n - 1} \right)!!}}{{{2^n}}}\sqrt \pi  ,{2^n}n! = \left( {2n} \right)!!,\]双向不等式$\text{(16)}$等价于\[\frac{1}{4} < {Q_n} = {\left[ {\frac{{\Gamma \left( {n + 1} \right)}}{{\Gamma \left( {n + \frac{1}{2}} \right)}}} \right]^2} - n \le \frac{4}{\pi } - 1.\tag{17}\]从推论2中数列$Q_n$的单调性可以看出\[\mathop {\lim }\limits_{n \to \infty } {Q_n} < {Q_n} \le {Q_1} = \frac{4}{\pi } - 1.\]利用渐近公式$\text{(11)}$,我们可以推断出\[{Q_n} = n\left[ {{n^{ - \frac{1}{2}}}\frac{{\Gamma \left( {n + 1} \right)}}{{\Gamma \left( {n + \frac{1}{2}} \right)}} - 1} \right]\left[ {{n^{ - \frac{1}{2}}}\frac{{\Gamma \left( {n + 1} \right)}}{{\Gamma \left( {n + \frac{1}{2}} \right)}} + 1} \right]\]即是\[\mathop {\lim }\limits_{n \to \infty } {Q_n} = \frac{1}{4}.\]因此,不等式$\text{(17)}$由此得到.证毕.

致谢

作者对匿名的审阅人和编辑,Carmen Chicone教授的许多有价值的评论和语言表达上的纠正表示感谢。

参考文献

[1] M. Abramowitz and I. A. Stegun (Eds.), Handbook of Mathematical Functions with Formulas,Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, 9th printing, Dover, New York, 1972. MR 34:8607
[2] H. Alzer, On some inequalities for the gamma and psi functions, Math. Comp. 66 (1997),373{389. MR 97e:33004
[3] G. D. Anderson, R. W. Barnard, K. C. Richards, M. K. Vamanamurthy, and M. Vuorinen,
Inequalities for zero-balanced hypergeometric functions, Trans. Amer. Math. Soc. 347 (1995),1713{1723. MR 95m:33002
[4] P. S. Bullen, A Dictionary of Inequalities, Pitman Monographs and Surveys in Pure and Applied Mathematics 97, Addison-Wesley, Longman Limited, 1998. MR 2000e:26001
[5] Ch.-P. Chen and F. Qi, Improvement of lower bound in Wallis' inequality, RGMIA Res. Rep.Coll. 5 (2002), suppl., Art. 23. Available online at http://rgmia.vu.edu.au/v5(E).html.
[6] Ch.-P. Chen and F. Qi, The best bounds in Wallis' inequality, RGMIA Res. Rep. Coll. 5(2002), no. 4, Art. 13. Available online at http://rgmia.vu.edu.au/v5n4.html.
[7] Ch.-P. Chen and F. Qi, A new proof of the best bounds in Wallis' inequality, RGMIA Res.Rep. Coll. 6 (2003), no. 2, Art. 2. Available online at http://rgmia.vu.edu.au/v6n2.html.
[8] S. R. Finch, Archimedes' Constant, $\S$ 1.4 in Mathematical Constants, Cambridge Univ. Press,Cambridge, England, 2003. Available online at http://pauillac.inria.fr/algo/bsolve/.
[9] C. L. Frenzer, Error bounds for asymptotic expansions of the ratio of two gamma functions,SIAM J. Math. Anal. 18 (1987), 890{896. MR 88d:33001
[10] http://mathworld.wolfram.com/HadamardProduct.html.
[11] http://mathworld.wolfram.com/RiemannZetaFunction.html.
[12] http://mathworld.wolfram.com/WallisFormula.html.
[13] http://mathworld.wolfram.com/WallisCosineFormula.html.
[14] http://mathworld.wolfram.com/WallisSineFormula.html.
[15] H. Je reys and B. S. Je reys, Wallis's Formula for $\pi$, $\S$ 15.07 in Methods of Mathematical Physics, 3rd ed. Cambridge Univ. Press, Cambridge, England, 1988.
[16] N. D. Kazarino , Analytic Inequalities, Holt, Rhinehart and Winston, New York, 1961. MR 41:5577
[17] J. F. Kenney and E. S. Keeping, Mathematics of Statistics, Part 2, 2nd ed., Van Nostrand,Princeton, New Jersey, 1951.
[18] J.-Ch. Kuang, Changyong Budengsh (Applied Inequalities), 2nd edition, Hunan Education Press, Changsha, China, 1993. (Chinese) MR 95j:26001
[19] Y. L. Luke, Inequalities for the gamma function and its logarithmic derivative, Math. Balkanica(N. S.) 2 (1972), 118{123. MR 50:10338
[20] A. F. Nikiforov and V. B. Uvarov, Special Functions of Mathematical Physics, Birkhauser,Basel, 1988. MR 89h:33001
[21] F. Qi, L.-H. Cui, and S.-L. Xu, Some inequalities constructed by Tchebyshe 's integral inequality,Math. Inequal. Appl. 2 (1999), no. 4, 517{528. MR 2000m:26027
[22] J. Sondow, Analytic continuation of Riemann's zeta function and values at negative integers via Euler's transformation of series, Proc. Amer. Math. Soc. 120 (1994),421{424. MR 94d:11066
[23] E. W.Weisstein, Concise Encyclopedia of Mathematics CD-ROM, CD-ROM edition 1.0, May 20, 1999. Available online at http://www.math.pku.edu.cn/stu/eresource/wsxy/sxrjjc/wk/Encyclopedia/math/w/w009.htm