中国科学技术大学第七届大学生数学夏令营试题
中国科大第七届大学生数学夏令营
数学分析试卷
考生姓名 所在学校 得分
一、(15分)
1.试用$\varepsilon-\delta$语言证明: $\displaystyle\lim_{x\to 0}x\sin\frac1{x^2}=0$;
2.设函数
\[f(x,y)=\begin{cases}(x^2+y^2)\sin\frac1{x^2+y^2},&(x,y)\neq (0,0);\\0,&(x,y)= (0,0).\end{cases}\]
试求$f'_x(0,0)$和$f'_y(0,0)$.
二、(30分)
1.求函数$f(x)=x^2e^x$的$10$阶导数$f^{(10)}(x)$;
2.将函数$f(x)=\ln (1+\sin x)$在$x=0$处Taylor展开到$3$阶,带Peano余项;
3.求$\displaystyle\int_0^{+\infty}\frac{dx}{1+x^2}$;
4.求$\displaystyle\int e^x\cos x\,dx$.
三、(30分)
1.求平面曲线$\displaystyle x^{\frac23}+y^{\frac23}=1$的长度;
2.设$a,b>0$,求平面曲线段$\displaystyle\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\, (a\leq x\leq a+b)$绕$x$轴旋转所得旋转体的体积;
3.求$\displaystyle\int_\Sigma x^3d\sigma$,其中$\Sigma$是球面$x^2+y^2+z^2=R^2,R>0$, $d\sigma$是曲面的面积元;
4.设$\mathbb{R}^3$中曲线$\Gamma$是曲面$f(x,y,z)=0$和曲面$g(x,y,z)=0$的交线,且变量$x$可以作为它的一个参数,求曲线$\Gamma$的切向量.
四、(15分)
1.设函数$f(x)=\arcsin (\cos x)$,将$f(x)$在$[-\pi,\pi]$上展开成Fourier级数,并讨论此Fourier级数的收敛性;
2.求向量场$\vec{V}=\frac{(x,y,z)}{(x^2+y^2+z^2)^{3/2}}$在曲面$S$上的第二型曲面积分,这里设曲面$\displaystyle S:\left\{\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\right\}$,正向为外法向.
五、(15分)
设$(a,b)$是有界开区间, $f(x)$是定义在$(a,b)$上的一致连续函数.证明$f(a^+)$和$f(b^-)$存在有限;并举例说明当$b=+\infty$时上述结论不成立.
六、(15分)
设定义在有界闭区间$[a,b]$上的函数$f(x)$满足$f''(x)>0$,且$f(a)>0,f(b)<0$.
1、证明存在唯一的$c\in (a,b),f(c)=0$;
2、设$x_0\in (a,b),f(x_0)>0$,定义数列$\displaystyle x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}(n=0,1,2,\ldots)$.证明$\displaystyle\lim_{n\to\infty}x_n=c$.
七、(15分)
设$f(x)$是闭区间$[0,1]$上的Riemann可积函数, $\lambda>0$是定数.定义$D_\lambda (f)=\{x\in [0,1] |\,\omega_f(x)\geq\lambda\}$,其中$\omega_f(x)$为函数$f$在点$x$的振幅.证明:对任意$\varepsilon>0$,存在有限个开区间$I_1,I_2.\ldots,I_m$满足
(1) $\displaystyle D_\lambda (f)\subset \bigcup_{k=1}^m I_k$;
(2) $\displaystyle \sum_{k=1}^m |I_k|<\varepsilon$,这里$|I_k|$是区间$I_k$的长度.
八、(15分)
设平面区域$D=\left\{(x,y)|\, x^2+y^2\leq 1\right\}$,函数$f(x,y)\in C^3(D)$且$f(0,0)=0$.
1.试证明:存在$\phi (x,y),\psi (x,y)\in C^2 (D)$满足
\[f(x,y)=x\phi (x,y)+y\psi (x,y);\]
2.若$\nabla f(0,0)=0$,试证明:存在$a(x,y),b(x,y),c(x,y)\in C^1(D)$满足\[f(x,y)=x^2a (x,y)+2xyb(x,y)+y^2 c(x,y);\]
3.设$\nabla f(0,0)=0$且$f(x,y)$的Hessian矩阵在$(0,0)$点正定.试证明:在原点附近存在参数变换$(u,v)\to (x,y)=\Phi (u,v),\Phi (0,0)=(0,0)$,使得\[f(u,v)=f\circ \Phi (u,v)=u^2+v^2.\]
中国科学技术大学2017大学生数学夏令营
线性代数与解析几何
说明:考试时间180分钟,试卷满分150.
一、填空题(每空5分,共40分,结果须化简)
1.设四面体$ABCD$的四个顶点坐标分别为$A(1,2,3),B(-1,0,2),C(2,4,5),D(0,-3,4)$,则$ABCD$的体积为 .
2.椭圆$x^2-xy+y^2-x=1$长半轴的长度为 .
3.直线$l:x-1=y=z$绕$z$轴旋转所得旋转面的方程为 .
4.设$\alpha_1,\alpha_2,\alpha_3$是三次方程$x^3+2x^2+4x-1=0$的三个根,则行列式$\left| \begin{matrix}\alpha _1& \alpha _2& \alpha _3\\\alpha _2& \alpha _3& \alpha _1\\\alpha _3& \alpha _1& \alpha_2\\\end{matrix} \right|=$ .
5.设矩阵$A=\left( \begin{matrix}1& \sqrt{3}\\-\sqrt{3}&1\\\end{matrix} \right)$,则$A^{2017}=$ .
6.设$\mathbb{R}^4$中向量组$\alpha_1=(1,2,-1,2),\alpha_2=(a,-4,1,0),\alpha_3=(2,-1,0,1)$的秩为$2$,则$a=$ .
7.设$\mathbb{R}^3$中线性变换$\mathcal{A}$将向量$\alpha_1=(1,2,3),\alpha_2=(0,1,1),\alpha_3=(0,0,1)$分别映射为向量$\beta_1=(-1,1,6),\beta_2=(-1,1,2),\beta_3=(0,-1,2)$,则$\mathcal{A}$在标准基$\mathbf{e_1}=(1,0,0),\mathbf{e_2}=(0,1,0),\mathbf{e_3}=(0,0,1)$下的矩阵为 .
8.二次型$Q(x,y,z)=\lambda (x^2+y^2+z^2)+3y^2-4xy-2xz+4yz$正定的充要条件是$\lambda$满足 .
二、判断题(每小题5分,共35分.判断下列叙述是否正确,并简要说明理由)
1.三维空间中向量$\mathbf{a},\mathbf{b},\mathbf{c}$共面当且仅当$\mathbf{a}\times\mathbf{b},\mathbf{b}\times\mathbf{c},\mathbf{c}\times\mathbf{a}$共面.
2.若实方阵$A$满足$\det (A)>0$,则存在实方阵$B$,使得$B^2=A$.
3.设向量组$\alpha_1,\ldots,\alpha_m$线性无关,且它们可以由向量组$\beta_1,\ldots,\beta_m$线性表示,则$\beta_1,\ldots,\beta_m$也线性无关.
4.设$F^{n\times n}$是$n$阶方阵全体按矩阵加法与数乘构成的线性空间. $W$是$F^{n\times n}$中可逆方阵全体构成的集合,则$W$是$F^{n\times n}$的子空间.
5.设$n$阶复方阵$A$与$B$相似,则它们的最小多项式相同.
6.对于任意实方阵$A$,存在可逆实方阵$P$,使得$P^{-1}AP=A^T$.
7.任何实方阵都可以分解为一个正交阵与一个上三角阵的乘积.
三、解答题(请从以下5题中任选4题,共75分.请给出详细解答过程)
1.在空间直角坐标系中,求过原点的平面$\pi$,使得它与柱面$S:3x^2-2xy+3y^2-10x-2y+10=0$的交线为圆.
2.给定$n$阶方阵$A=(a_{ij})$,其中$a_{ii}=2i+1,i=1,2,\ldots,n;a_{ij}=i+j\, (i\neq j),i,j=1,2,\ldots,n$.求矩阵$A$的行列式及逆矩阵.
3.设$n$阶复方阵$A,B$满足$AB=BA$.证明:存在复向量$\alpha$既是$A$的特征向量,也是$B$的特征向量.
4.给定方阵$A\in F^{n\times n}$,定义$F^{n\times n}$上的映射$\mathcal{A}:X\longrightarrow AX-XA$.
(a)证明$\mathcal{A}$是线性映射,并且$\mathcal{A}$不可逆;
(b)假设$A$可以对角化,则$F^{n\times n}=\mathrm{Ker}(\mathcal{A})\oplus \mathrm{Im}(\mathcal{A})$是否成立?请说明理由.
5.设$A$是$n$阶实对称正定方阵, $K$是$n$阶非零反对称方阵.证明: $\det (A+K)>\det (A)$.
国科大硕转博公共基础课考试试题
中国科学技术大学2016年秋季博士资格考试试卷
LECTURE NOTES OF WILLIAM CHEN
LECTURE NOTES OF WILLIAM CHEN
https://rutherglen.science.mq.edu.au/~maths/notes/wchen/ln.html
北京大学2016年直博考试试题
北京大学数学科学学院
2016年直博生摸底考试试题
1.证明题(30分,每小题15分)
(1) 若$f(x)$在实轴上可导且$f'(x)>f(x),\forall x\in (-\infty,\infty)$,则$f(x)$至多有一个零点.
(2) 若$f(x)$处处二阶可导且$f''(x)>f(x),\forall x\in (-\infty,\infty)$,则$f(x)$至多有两个零点.
2.(30分)假设$\phi(x,y,z)$是原点$O$某个邻域上$C^\infty$函数,且$\phi,\phi_x,\phi_y,\phi_{xz},\phi_{yz}$在$O$点为$0$, $\phi_{xx},\phi_{yy}$在$O$点为$1$, $\phi_{xy}(O)=\frac12,\phi_{z}(O)=-\frac12$. $\phi(x,y,z)=0$的隐函数记为$z=z(x,y)$(已知$z(0,0)=0$).请讨论$z=z(x,y)$在$(0,0)$点附近的极值问题.
3.(40分)设$z=z(x,y)$是题2中的隐函数, $\Omega_\delta$是$(0,0)$点的$\delta$邻域,当$\delta$充分小时,证明如下极限存在并求之\[\mathop {\lim }\limits_{t \to + \infty } t\iint_{{\Omega _\delta }} {{e^{ - tz\left( {x,y} \right)}}\,dxdy} .\]
4.(20分)设$A$是一个$2$阶复方阵.考虑$2$阶复方阵的线性空间$M_2(\mathbb C)$上的线性变换
\[\phi_A:M_2(\mathbb C)\to M_2(\mathbb C);X \mapsto AX-XA.\]试确定$\dim (\ker (\phi_A))$的所有可能的取值.
5.(30分)对于有理数域$\mathbb Q$上的两个$n$阶方阵
试证明两者是相似的,并求出一个矩阵$T$,使得$A=T^{-1}BT$.
6.(20分) $\mathbb R[x]$中有多项式$f(x)=x^4+a_1x^3+a_2x^2+a_3x+a_4$.试用系数$a_1,a_2,a_3,a_4$的关系式,给出$f(x)$能表达成某个不可约二次多项式$g(x)$之平方的充分必要条件.
7.(30分)欧氏平面上保定向的等距变换群的一个子群$G$,其中每一个非恒同的变换$g$都没有不动点,而且每一个平面上的点$p$在群$G$作用下得到的轨道(即点集$\{g(p)|g\in G\}$)若平面上都没有聚点.试证明$G$可以由一个或两个平移变换生成,即$G=\{n\alpha|n\in\mathbb Z\}$或$G=\{n\alpha+m\beta|n,m\in\mathbb Z\}$,其中$\mathbb Z$为整数集, $n,m$为任意整数, $\alpha,\beta$为线性无关的平移向量(也表示其对应的平移变换). $n\alpha+m\beta$即对应线性组合所表示的平移.
T大2016年直博考试试题
数学试题专用纸
2016年4月
一、i)设$D$为$\mathbb{R}^n$上的一个区域$f:D\to \mathbb{R}^n$为连续可微映射.试叙述关于映射$f$的逆映射定理(包括条件和结论).
ii)试利用逆映射定理证明不存在从$\mathbb{R}^n$到$\mathbb{R}^1$的连续可微的单射.
二、给定$\mathbb{R}^3\backslash\{0\}$上的向量场
\[\overrightarrow v = \left( {\frac{x}{{{{\left( {{x^2} + 2{y^2} + 3{z^2}} \right)}^{\frac{3}{2}}}}},\frac{y}{{{{\left( {{x^2} + 2{y^2} + 3{z^2}} \right)}^{\frac{3}{2}}}}},\frac{z}{{{{\left( {{x^2} + 2{y^2} + 3{z^2}} \right)}^{\frac{3}{2}}}}}} \right).\]
记$\overrightarrow n$为$\mathbb{R}^3$中的单位球面$S^2$的单位外法向量场.试求积分
\[\int_{S^2}\overrightarrow v\cdot \overrightarrow n d\sigma.\]
三、设定义在$\mathbb{R}$上周期为$2\pi$的函数$f$在区间$(-\pi,\pi]$上的取值为$f(x)=x$.
i)试给出其Fourier级数,求出Fourier级数的和函数,并说明此级数是否在$\mathbb R$上一致收敛.
ii)试利用上述Fourier级数及Parseval等式求级数$\sum_{n\geq1}\frac1{n^2}$的和.
四、设$f(x)$在单位圆盘$|z|<1$上解析,满足$|f(z)|<1$,并且$f(\alpha)=0$,其中$|\alpha|<1$.
1.试证明当$|z|<1$时成立\[\left| {f\left( z \right)} \right| \le \left| {\frac{{z - \alpha }}{{1 - \overline \alpha z}}} \right|.\]
2.试给出上面的不等式中等号成立的充要条件.
五、给定$A\in M_n(\mathbb C)$.令$f(x)$为其特征多项式, $g(x)\in \mathbb C [x]$是一个整除$f(x)$的$n-1$次多项式.求$g(A)$可能的秩,并说明理由.
六、设$V$是复数域上的$n$维线性空间, $\sigma$为$V$上的一幂幺变换(即:存在正整数$k$使得$\sigma^k=1_V$, $1_V$是$V$上的恒等变换).设$W$为$V$的$\sigma-$不变子空间.证明$V$中存在$\sigma-$不变子空间$W'$使得$V=W\oplus W'$.
数学试题专用纸
2016年4月
一、设定义在$D\subset \mathbb R$上的函数$f$在$x_0$处解析,即存在$\delta>0$使得可以将$f$在开区间$I=(x_0-\delta,x_0+\delta)\subset D$上展开成$x-x_0$的幂级数.
1.试证明$f$在$(x_0-\delta,x_0+\delta)$的任意点处解析;
2.若$f$在$I$上不恒等于零.试证明$f$在$I$中的零点是孤立的,即对任一$x_1\in I$,如果$f(x_1)=0$,则存在$x_1$的邻域$J=(x_1- \epsilon,x_1+\epsilon)\subset I$,使得$f$在$J$上只有$x_1$一个零点.
二、试求由椭球面$\frac{x^2}2+\frac{y^2}6+\frac{z^2}{27}=1$在第一象限的切平面与三个坐标平面所围成的四面体的最小体积.
三、记$S$是球面$x^2+y^2+z^2=1$的外侧.试利用Stokes定理计算下列积分\[\int_S {\frac{{x\,dy \wedge dz + y\,dz \wedge dx + z\,dx \wedge dy}}{{{{\left( {2{x^2} + 3{y^2} + 6{z^2}} \right)}^{\frac{3}{2}}}}}} .\]
四、设$D$是$\mathbb R^n$中的一个区域, $K$是$D$中的一个紧集. $f:D\to \mathbb{R}^n$连续可微,满足$f$在$K$上是单射,且$\det(f')$在$K$上恒不为零.求证:存在$D$中包含$K$的开集$U$以及$\mathbb{R}^n$中包含$f(K)$的开集$V$,使得$f:U\to V$是微分同胚,且其逆$f^{-1}$连续可微.
五、设$A,B$是数域$F$上$n$阶方阵,满足$AB-BA=aB,a\in F$,且$B$不是幂零矩阵.试证明$a=0$.
六、已知$X_1=(1,-2,1)^t,X_2=(-1,a,1)^t$分别是$3$阶不可逆实对称矩阵$A$的属于特征值$1,-1$的特征向量,试求$A$.
七、假设$V$为一有限维向量空间, $T:V\to V$为一可对角化的线性变换.又设$W\subset V$为$T$的一个不变线性子空间.试证明$T$在$W$上的限制也是可对角化的.
中科院研究生学费及奖助学金政策解读
伯克利一老师主页
伯克利一主页,里面很多资料https://math.berkeley.edu/~giventh/
京都大学和东京大学等名校数学系试题
东京大学:http://www.ms.u-tokyo.ac.jp/kyoumu/examination1.html
以及别的专业问题:https://www.s.u-tokyo.ac.jp/ja/admission/master/
京都大学:https://www.math.kyoto-u.ac.jp/ja/past-exams
PUMaC普林斯顿数学竞赛试题:https://pumac.princeton.edu/info/archives/
哈佛的题:https://www.physics.harvard.edu/academics/undergrad/problems
https://www.hmmt.co/archive/problems/
http://www.math.harvard.edu/graduate/index.html
UCLA:http://papyrus.math.ucla.edu/gradquals/hbquals.php
马塞诸萨州大学:https://www.math.umass.edu/graduate/sample-qualifying-exams
斯坦福大学Phd资格考试实分析和代数试题