与调和数列有关的级数计算
关于π的级数
与∑arctan有关的一些问题
证明∞∑n=1arctan10n(3n2+2)(9n2−1)=ln3−π4.
解.(r9m)首先有
S=∞∑n=1arctan10n(3n2+2)(9n2−1)=∞∑n=1arg(1+10in(3n2+2)(9n2−1))=arg∞∏n=1(1+10in(3n2+2)(9n2−1))=arg∞∏n=1((3n2+2)(9n2−1)+10in27n4(1+23n2)(1−19n2)).
分母里的无穷乘积∞∏n=1(1+23n2)和∞∏n=1(1−19n2) 可以被忽略,当它们收敛于实数时.
因此
S=arg∞∏n=1((3n2+2)(9n2−1)+10in27n4).
对分子进行分解
(3n2+2)(9n2−1)+10in=(n−i)(3n+i)(3n+i+1)(3n+i−1).
我们得
S=arg∞∏n=1(1+i3n)(1+i+13n)(1+i−13n)(1+in).
在z=i,i3,i+13,i−13 处运用1Γ(z)=zeγz∞∏n=1(1+zn)e−z/n .
我们可以改写为
S=arg−Γ(i)Γ(i3)Γ(i+13)Γ(i−13).
另一方面运用Gauss-Legendre Triplication Formula
Γ(3z)=12π33z−12Γ(z)Γ(z+13)Γ(z+23).
令z=i−13我们有
Γ(i−13)Γ(i3)Γ(i+13)=2π3−i+32Γ(i−1)
因此S=arg−3iΓ(i)Γ(i−1)=arg(3i(1−i))=log3−π4.
解法二.(robjohn)运用arctan(x)=arg(1+ix),分解可知
1+10in(3n2+2)(9n2−1)=(1−in)(1+i3n−1)(1+i3n+1)(1+i3n)1+23n2.
因此有
arctan(10n(3n2+2)(9n2−1))=arctan(13n−1)+arctan(13n)+arctan(13n+1)−arctan(1n).
裂项可知
∞∑n=1arctan(10n(3n2+2)(9n2−1))=lim
哆嗒数学网里代数龙发的一系列级数题
练习题1.证明:\sum\limits_{n=1}^{\infty}\frac{1}{(n+1)\sqrt[p]{n}}\leq p,\,\,(p\ge1).
证:由Lagrange中值定理,我们有
\sqrt[p]{{n + 1}} - \sqrt[p]{n} = \frac{1}{p}{\xi ^{1/p - 1}} \ge \frac{1}{p}{\left( {n + 1} \right)^{1/p - 1}},\quad \xi \in \left( {n,n + 1} \right).
因此\frac{1}{{\left( {n + 1} \right)\sqrt[p]{n}}} = \frac{{\sqrt[p]{{n + 1}} - \sqrt[p]{n}}}{{\sqrt[p]{n} \cdot \sqrt[p]{{n + 1}}}} \cdot \frac{{{{\left( {n + 1} \right)}^{1/p - 1}}}}{{\sqrt[p]{{n + 1}} - \sqrt[p]{n}}} \le p\frac{{\sqrt[p]{{n + 1}} - \sqrt[p]{n}}}{{\sqrt[p]{n} \cdot \sqrt[p]{{n + 1}}}} = p\left( {\frac{1}{{\sqrt[p]{n}}} - \frac{1}{{\sqrt[p]{{n + 1}}}}} \right).
立即有
\sum\limits_{n = 1}^\infty {\frac{1}{{\left( {n + 1} \right)\sqrt[p]{n}}}} \le p\sum\limits_{n = 1}^\infty {\left( {\frac{1}{{\sqrt[p]{n}}} - \frac{1}{{\sqrt[p]{{n + 1}}}}} \right)} = p.
练习题2.设\displaystyle S_n=\sum\limits_{k=1}^{n}a_k, p>1,c>1,证明:\sum\limits_{n=1}^{\infty}\frac{S_n^p}{n^c}\le K\sum\limits_{n=1}^{\infty}\frac{(na_n)^p}{n^c},并求出K的最优值.
练习题3.设a_n是有界的正数列,p>0,证明:
练习题4.设(0,+\infty)上的函数列f_n由下式定义:f_1(x)=x,f_{n+1}(x)=(f_n(x)+\frac{1}{n})f_n(x).证明:存在唯一的正数a,使得对于所有n,0<f_n(x)<f_{n+1}(a)<1.
练习题5.\displaystyle\sum\limits_{n=1}^{\infty}a_n为正项收敛级数,\displaystyle r_n=\sum\limits_{k=n}^{\infty}a_k,0<p<1,证明:\sum\limits_{n=1}^{\infty}\frac{a_n}{r_n^p}<\frac{1}{1-p}\left(\sum\limits_{n=1}^{\infty}a_n \right)^{1-p}.
练习题6.设a>0,a_n是一个数列,并且a_n>0,a_{n+1}\ge a_n,证明:\sum\limits_{n=1}^{\infty}\frac{a_n-a_{n-1}}{a_na_{n-1}^a}收敛.
证:首先可以确定给定的级数是正项级数.
(1)当0<a<1时,我们利用Lagrange中值定理,有\frac{{a_n^a - a_{n - 1}^a}}{{{a_n} - {a_{n - 1}}}} = a{\xi ^{a - 1}} \ge aa_n^{a - 1},\quad \xi \in \left( {{a_{n - 1}},{a_n}} \right).
因此\frac{{{a_n} - {a_{n - 1}}}}{{{a_n}a_{n - 1}^a}} = \frac{{a_n^a - a_{n - 1}^a}}{{a_n^aa_{n - 1}^a}} \cdot \left( {\frac{{{a_n} - {a_{n - 1}}}}{{a_n^a - a_{n - 1}^a}} \cdot a_n^{a - 1}} \right) \le \frac{1}{a}\frac{{a_n^a - a_{n - 1}^a}}{{a_n^aa_{n - 1}^a}} = \frac{1}{a}\left( {\frac{1}{{a_{n - 1}^a}} - \frac{1}{{a_n^a}}} \right).
故\sum\limits_{n = 1}^\infty {\frac{{{a_n} - {a_{n - 1}}}}{{{a_n}a_{n - 1}^a}}} \le \frac{1}{a}\sum\limits_{n = 1}^\infty {\left( {\frac{1}{{a_{n - 1}^a}} - \frac{1}{{a_n^a}}} \right)} = \frac{1}{a}\left( {\frac{1}{{a_0^a}} - \mathop {\lim }\limits_{n \to \infty } \frac{1}{{a_n^a}}} \right).
由于\{a_n\}是单增的正数列,则{\mathop {\lim }\limits_{n \to \infty } \frac{1}{{a_n^a}}}必定存在,由此可知原正项级数收敛;
(2)当a\geq1时,由\sum\limits_{n = 1}^\infty {\frac{{{a_n} - {a_{n - 1}}}}{{{a_n}a_{n - 1}^a}}} = \sum\limits_{n = 1}^\infty {\left( {\frac{1}{{a_{n - 1}^a}} - \frac{{a_{n - 1}^{1 - a}}}{{{a_n}}}} \right)} \le \sum\limits_{n = 1}^\infty {\left( {\frac{1}{{a_{n - 1}^a}} - \frac{1}{{a_n^a}}} \right)} = \frac{1}{a}\left( {\frac{1}{{a_0^a}} - \mathop {\lim }\limits_{n \to \infty } \frac{1}{{a_n^a}}} \right)同样可知原正项级数收敛.
综上,级数\sum\limits_{n=1}^{\infty}\frac{a_n-a_{n-1}}{a_na_{n-1}^a}收敛.
练习题7.设\displaystyle S(x)=\sum\limits_{n=1}^{\infty}\frac{2n}{(n^2 +x^2)^2},证明:\frac{1}{x^2 +\frac{1}{2\zeta(3)}}<S(x)<\frac{1}{x^2 +\frac{1}{6}},其中\displaystyle \zeta(3)=\sum\limits_{n=1}^{\infty}\frac{1}{n^3}.
练习题8.给定序列\{a_n\},且a_n满足a_1=2,a_2=8,a_n=4a_{n-1}-a_{n-2}(n=3,4,\ldots),证明:\sum\limits_{n=1}^{\infty}\text{arccot}\,\,a_n^2=\frac{\pi}{12}.
证.由{a_n} + {a_{n - 2}} = 4{a_{n - 1}}可知{a_n}\left( {{a_n} + {a_{n - 2}}} \right) = 4{a_{n - 1}}{a_n} = {a_{n - 1}}\left( {{a_{n + 1}} + {a_{n - 1}}} \right),递推得a_n^2 - {a_{n + 1}}{a_{n - 1}} = a_{n - 1}^2 - {a_n}{a_{n - 2}} = \cdots = a_2^2 - {a_3}{a_1} = 4.
注意到\mathrm{arccot\,} x的一个公式
\mathrm{arccot\,} x-\mathrm{arccot\,} y=\mathrm{arccot\,}\left( \frac{1+xy}{y-x}\right).
因此有
\begin{align*}\mathrm{arccot\,} a_n^2 &= \mathrm{arccot\,} \frac{{{a_n} \cdot 4{a_n}}}{4} = \mathrm{arccot\,} \frac{{{a_n}\left( {{a_{n + 1}} + {a_{n - 1}}} \right)}}{4} =\mathrm{arccot\,} \frac{{{a_n}\left( {{a_{n + 1}} + {a_{n - 1}}} \right)}}{{a_n^2 - {a_{n + 1}}{a_{n - 1}}}}\\& = \mathrm{arccot\,} \frac{{1 + \frac{{{a_{n + 1}}}}{{{a_{n - 1}}}}}}{{\frac{{{a_n}}}{{{a_{n - 1}}}} - \frac{{{a_{n + 1}}}}{{{a_n}}}}} = \mathrm{arccot\,} \frac{{{a_{n + 1}}}}{{{a_n}}} -\mathrm{arccot\,} \frac{{{a_n}}}{{{a_{n - 1}}}}.\end{align*}
易得\mathop {\lim }\limits_{n \to \infty } \frac{{{a_{n + 1}}}}{{{a_n}}} = 2 + \sqrt 3 .
故
\sum\limits_{n = 1}^\infty {\mathrm{arccot\,} a_n^2} = \mathrm{arccot\,} a_1^2 + \sum\limits_{n = 2}^\infty {\mathrm{arccot\,} a_n^2} = \mathop {\lim }\limits_{n \to \infty } \mathrm{arccot\,} \frac{{{a_{n + 1}}}}{{{a_n}}} - \mathrm{arccot\,} \frac{{{a_2}}}{{{a_1}}} + \mathrm{arccot\,} a_1^2 = \frac{\pi }{{12}}.
练习题9.设\displaystyle a_n=\arctan \frac{1}{n^2 +n +1},证明: \sum\limits_{k=1}^{\infty}\frac{a_k^{1/2}}{k^2} \le \sqrt{\frac{\pi}{3}}.
证.注意到
\begin{align*}\sum\limits_{k = 1}^\infty {{a_k}} &= \sum\limits_{k = 1}^\infty {\arctan \frac{1}{{{k^2} + k + 1}}} = \sum\limits_{k = 1}^\infty {\left( {\arctan \frac{1}{k} - \arctan \frac{1}{{k + 1}}} \right)} = \frac{\pi }{4}\\\sum\limits_{k = 1}^\infty {\frac{1}{{{k^4}}}} &= \zeta \left( 4 \right) = \frac{{{\pi ^4}}}{{90}}.\end{align*}
由Cauchy-Schwarz不等式可知
\sum\limits_{k = 1}^N {\frac{1}{{{k^4}}}} \cdot \sum\limits_{k = 1}^N {{a_k}} \ge {\left( {\sum\limits_{k = 1}^N {\frac{{a_k^{1/2}}}{{{k^2}}}} } \right)^2}.
令N\to\infty,我们有\sum\limits_{k = 1}^\infty {\frac{{a_k^{1/2}}}{{{k^2}}}} \le \sqrt {\frac{{{\pi ^4}}}{{90}} \cdot \frac{\pi }{4}} = \sqrt {\frac{{{\pi ^5}}}{{360}}} < \sqrt {\frac{\pi }{3}} .
也可通过放缩实现\sum\limits_{k = 1}^\infty {\frac{1}{{{k^4}}}} = 1 + \sum\limits_{k = 2}^\infty {\frac{1}{{{k^4}}}} < 1 + \sum\limits_{k = 2}^\infty {\frac{1}{{\left( {k + 1} \right)\left( {k + 2} \right)}}} = \frac{4}{3}.
练习题10.设\displaystyle a_n > 0, S_n=\sum\limits_{k=1}^na_k,证明:
证.(1)由柯西不等式我们得
\sum\limits_{m = 1}^n {\frac{{{m^2}}}{{{a_m}}}} \sum\limits_{m = 1}^n {{a_m}} \ge {\left( {1 + 2 + \cdots + n} \right)^2} = \frac{1}{4}{n^2}{\left( {n + 1} \right)^2},
即\frac{n}{{{a_1} + {a_2} + \cdots + {a_n}}} \le \frac{4}{{n{{\left( {n + 1} \right)}^2}}}\sum\limits_{m = 1}^n {\frac{{{m^2}}}{{{a_m}}}} .
因此
\begin{align*}\sum\limits_{n = 1}^\infty {\frac{n}{{{a_1} + {a_2} + \cdots + {a_n}}}} &\le 4\sum\limits_{n = 1}^\infty {\frac{1}{{n{{\left( {n + 1} \right)}^2}}}\sum\limits_{m = 1}^n {\frac{{{m^2}}}{{{a_m}}}} } = 4\sum\limits_{m = 1}^\infty {\frac{{{m^2}}}{{{a_m}}}\sum\limits_{n = m}^\infty {\frac{1}{{n{{\left( {n + 1} \right)}^2}}}} } \\&\le 4\sum\limits_{m = 1}^\infty {\frac{{{m^2}}}{{{a_m}}}\sum\limits_{n = m}^\infty {\frac{1}{2}\left[ {\frac{1}{{{n^2}}} - \frac{1}{{{{\left( {n + 1} \right)}^2}}}} \right]} } = 2\sum\limits_{m = 1}^\infty {\frac{1}{{{a_m}}}} .\end{align*}
这里用到了\frac{1}{{n{{\left( {n + 1} \right)}^2}}} \le \frac{1}{2}\frac{{2n + 1}}{{{n^2}{{\left( {n + 1} \right)}^2}}} = \frac{1}{2}\left[ {\frac{1}{{{n^2}}} - \frac{1}{{{{\left( {n + 1} \right)}^2}}}} \right].
注意到a_n=n^\alpha,\alpha>1时有
\mathop {\lim }\limits_{\alpha \to 1} \frac{{\sum\limits_{n = 1}^\infty {\frac{n}{{{a_1} + {a_2} + \cdots + {a_n}}}} }}{{\sum\limits_{j = 1}^\infty {\frac{1}{{{a_j}}}} }} = \mathop {\lim }\limits_{\alpha \to 1} \mathop {\lim }\limits_{N \to \infty } \frac{{\sum\limits_{n = 1}^N {\frac{n}{{{1^\alpha } + {2^\alpha } + \cdots + {n^\alpha }}}} }}{{\sum\limits_{n = 1}^N {\frac{1}{{{n^\alpha }}}} }} = \mathop {\lim }\limits_{\alpha \to 1} \mathop {\lim }\limits_{N \to \infty } \frac{{\frac{N}{{\frac{1}{{\alpha + 1}}{N^{\alpha + 1}} + O\left( {{N^\alpha }} \right)}}}}{{\frac{1}{{{N^\alpha }}}}} = 2.
(2)如法炮制.由柯西不等式我们得
\sum\limits_{m = 1}^n {\frac{{{m^2}}}{{{a_m}}}} \sum\limits_{m = 1}^n {{a_m}} \ge {\left( {1 + 2 + \cdots + n} \right)^2} = \frac{1}{4}{n^2}{\left( {n + 1} \right)^2},
即
\frac{{2n + 1}}{{{a_1} + {a_2} + \cdots + {a_n}}} \le \frac{{4\left( {2n + 1} \right)}}{{{n^2}{{\left( {n + 1} \right)}^2}}}\sum\limits_{m = 1}^n {\frac{{{m^2}}}{{{a_m}}}} .
因此
\begin{align*}\sum\limits_{n = 1}^\infty {\frac{{2n + 1}}{{{a_1} + {a_2} + \cdots + {a_n}}}} &\le 4\sum\limits_{n = 1}^\infty {\frac{{2n + 1}}{{{n^2}{{\left( {n + 1} \right)}^2}}}\sum\limits_{m = 1}^n {\frac{{{m^2}}}{{{a_m}}}} } = 4\sum\limits_{m = 1}^\infty {\frac{{{m^2}}}{{{a_m}}}\sum\limits_{n = m}^\infty {\frac{{2n + 1}}{{{n^2}{{\left( {n + 1} \right)}^2}}}} } \\&= 4\sum\limits_{m = 1}^\infty {\frac{{{m^2}}}{{{a_m}}}\sum\limits_{n = m}^\infty {\left[ {\frac{1}{{{n^2}}} - \frac{1}{{{{\left( {n + 1} \right)}^2}}}} \right]} } = 4\sum\limits_{m = 1}^\infty {\frac{1}{{{a_m}}}}.\end{align*}
练习题11.设\displaystyle a_n \ge 0, n=1,2,\ldots,\sum\limits_{n=1}^{\infty}a_n < \infty,证明:
\sum\limits_{n=1}^{\infty}(a_1a_2\cdots a_n)^{\frac{1}{n}} \le e \sum\limits_{n=1}^{\infty}a_n,且证明e是最优值.
此题再拓展下求证:\sum\limits_{n=1}^{\infty}(a_1a_2\cdots a_n)^{\frac{1}{n}} \le e \sum\limits_{n=1}^{\infty}[1-\frac{1}{2(n+1)}]a_n.
练习题12.如果正项级数\displaystyle \sum\limits_{n=1}^{\infty}\frac{1}{p_n}收敛,证明:级数\displaystyle \sum\limits_{n=1}^{\infty}\frac{n^2}{(p_1+p_2+\cdots+p_n)^2}p_n也收敛.
练习题13.设\displaystyle \sum\limits_{n=1}^{\infty}a_n为正项级数,且\displaystyle \sum\limits_{k=1}^{n}(a_k-a_n)对n有界,a_n单调递减趋于0,证明:级数\displaystyle \sum\limits_{n=1}^{\infty}a_n收敛.
练习题14.设级数\displaystyle \sum\limits_{n=1}^{\infty}a_n收敛, \displaystyle \sum\limits_{n=1}^{\infty}(b_{n+1}-b_n)绝对收敛,证明:级数\displaystyle \sum\limits_{n=1}^{\infty}a_nb_n收敛.
练习题15.设a_n>0,\left\{ a_n-a_{n+1}\right\}为一个严格递减的数列.如果\sum_{n=1}^{\infty}a_n收敛。试证:\lim\limits_{n \to \infty}\left( \cfrac{1}{a_{n+1}}-\cfrac{1}{a_n}\right)=+\infty.
练习题16.能否构造一个收敛数列\sum\limits_{n=1}^{\infty}a_n,使得级数\sum\limits_{n=1}^{\infty}a_n^3发散.
练习题17.设\lim \limits_{n\rightarrow +\infty}x_n=+\infty,正项级数\sum\limits_{n=1}^{\infty}y_n收敛,设n_0是某一自然数,
练习题18.设\sum\limits_{n=1}^{\infty}a_n是一正项收敛级数,且有a_{n+1}< \frac{1}{2}(a_n+a_{n+2}),\,\frac{1}{a_{n+2}}-\frac{1}{a_{n+1}}\le \frac{1}{3}(\frac{1}{a_{n+3}}-\frac{1}{a_{n}}),
与\sin n^2类似的一些问题
1.证明: \sum_{k=1}^n\sin k^2无界.
参看: http://www.zhihu.com/question/29094450
2.证明\mathop {\lim }\limits_{n \to \infty } \frac{1}{n}\sum\limits_{k = 1}^n {\sin \sqrt k } = 0.
一个与多项式分拆有关的级数题
\sum{\frac{n}{{{e^{2\pi n}} - 1}}}型的级数求解
Proof.What you require here are the Eisenstein series. In particular the evaluation of
Euler Sum的若干研究
本文主要展示并分享有关Euler Sum的若干求解问题。
问题一:求\sum_{n=1}^\infty{\frac{H_n}{n^q}}
Solution.
参考文献
[1]
[2]
一个级数求解