Processing math: 12%
Eufisky - The lost book

与调和数列有关的级数计算

求和n=1HnH2nn(2n+1).
解.(向老师)首先不难得到
n=1HnH2nn(2n+1)=2n=1(HnH2n)(12n12n+1)=2n=1(12n12n+1)10x2nxn1xdx=10xln1+x1xln1+x1xln(1+x)1xdx+10(1xln1+x1x1xln1+x1x)dx,
其中
101xln1+x1xdx=210ln1+t1tdt=4ln2.
101xln1+x1xdx=Li2(1)Li2(1)=π24.
10(x1)1xln1+x1xdx=210t1+tln1+t1tdt=210[ln(1+t)1+tln(1t)1+t]dt210ln1+t1tdt=ln22+2Li2(12)4ln2=π264ln2.
10ln1+x1xln1+x1xln(1+x)1xdx=21011xln1+x1xdx=210ln(1+x)ln21xdx210ln(1+x)ln21xdx,
其中
10ln(1+x)ln21xdx=210t1t2ln1+t2dt=1011tln1+t2dt1011+tln1+t2dt=Li2(12)+12ln22=ln22π212.
10ln(1+x)ln21xdx=Li2(12)=ln222π212.
最后得到
n=1HnH2nn(2n+1)=4ln2π24+π264ln2+2(ln22π212)2(ln222π212)=ln22π26.
 

关于π的级数

n=01+14n+76n2+168n3220n(2nn)7=32π3.
来源: https://www.zhihu.com/question/52190554#answer-47273014
 
01rerr0sinkrdr=1r01dx0erxr0sinkrdr.
 
研究Ramanujan文章的网站:http://ramanujan.sirinudi.org/
 
研究黎曼猜想的网站:http://empslocal.ex.ac.uk/people/staff/mrwatkin//zeta/riemannhyp.htm#resources
 
问题集.
1.若αβ=π,则α0ex2dxcoshαx=β0ex2dxcoshβx.
2.求证e7πx(e3πx+e3πx)3(1+x2)dx=π8+4(8373+5π(161753π))3375π2.
3.2016.12.30
x3sinxx4+2x2+1dx=π2e.
4.求k=1(1)k1ln(2k1)2k1.

arctan有关的一些问题

证明n=1arctan10n(3n2+2)(9n21)=ln3π4.


解.(r9m)首先有

S=n=1arctan10n(3n2+2)(9n21)=n=1arg(1+10in(3n2+2)(9n21))=argn=1(1+10in(3n2+2)(9n21))=argn=1((3n2+2)(9n21)+10in27n4(1+23n2)(119n2)).

分母里的无穷乘积n=1(1+23n2)n=1(119n2) 可以被忽略,当它们收敛于实数时.

因此

S=argn=1((3n2+2)(9n21)+10in27n4).

对分子进行分解

(3n2+2)(9n21)+10in=(ni)(3n+i)(3n+i+1)(3n+i1).

我们得

S=argn=1(1+i3n)(1+i+13n)(1+i13n)(1+in).

 

z=i,i3,i+13,i13 处运用1Γ(z)=zeγzn=1(1+zn)ez/n .

 

我们可以改写为

S=argΓ(i)Γ(i3)Γ(i+13)Γ(i13).

 

另一方面运用Gauss-Legendre Triplication Formula

Γ(3z)=12π33z12Γ(z)Γ(z+13)Γ(z+23).

 

z=i13我们有

Γ(i13)Γ(i3)Γ(i+13)=2π3i+32Γ(i1)

 

因此S=arg3iΓ(i)Γ(i1)=arg(3i(1i))=log3π4.

 

解法二.(robjohn)运用arctan(x)=arg(1+ix),分解可知

1+10in(3n2+2)(9n21)=(1in)(1+i3n1)(1+i3n+1)(1+i3n)1+23n2.

因此有

arctan(10n(3n2+2)(9n21))=arctan(13n1)+arctan(13n)+arctan(13n+1)arctan(1n).

 

裂项可知

n=1arctan(10n(3n2+2)(9n21))=lim

哆嗒数学网里代数龙发的一系列级数题

练习题1.证明:\sum\limits_{n=1}^{\infty}\frac{1}{(n+1)\sqrt[p]{n}}\leq p,\,\,(p\ge1).

证:由Lagrange中值定理,我们有

\sqrt[p]{{n + 1}} - \sqrt[p]{n} = \frac{1}{p}{\xi ^{1/p - 1}} \ge \frac{1}{p}{\left( {n + 1} \right)^{1/p - 1}},\quad \xi  \in \left( {n,n + 1} \right).

因此\frac{1}{{\left( {n + 1} \right)\sqrt[p]{n}}} = \frac{{\sqrt[p]{{n + 1}} - \sqrt[p]{n}}}{{\sqrt[p]{n} \cdot \sqrt[p]{{n + 1}}}} \cdot \frac{{{{\left( {n + 1} \right)}^{1/p - 1}}}}{{\sqrt[p]{{n + 1}} - \sqrt[p]{n}}} \le p\frac{{\sqrt[p]{{n + 1}} - \sqrt[p]{n}}}{{\sqrt[p]{n} \cdot \sqrt[p]{{n + 1}}}} = p\left( {\frac{1}{{\sqrt[p]{n}}} - \frac{1}{{\sqrt[p]{{n + 1}}}}} \right).

立即有

\sum\limits_{n = 1}^\infty  {\frac{1}{{\left( {n + 1} \right)\sqrt[p]{n}}}}  \le p\sum\limits_{n = 1}^\infty  {\left( {\frac{1}{{\sqrt[p]{n}}} - \frac{1}{{\sqrt[p]{{n + 1}}}}} \right)}  = p.


练习题2.设\displaystyle S_n=\sum\limits_{k=1}^{n}a_k, p>1,c>1,证明:\sum\limits_{n=1}^{\infty}\frac{S_n^p}{n^c}\le K\sum\limits_{n=1}^{\infty}\frac{(na_n)^p}{n^c},并求出K的最优值.


练习题3.设a_n是有界的正数列,p>0,证明:

\frac{1}{a_1^p}+\sum\limits_{n=1}^{\infty}\frac{a_1a_2 \cdots a_n}{a_{n+1}^p} \ge \sum\limits_{n=0}^{\infty}(\frac{p}{p+1})^{n-p}.

练习题4.设(0,+\infty)上的函数列f_n由下式定义:f_1(x)=x,f_{n+1}(x)=(f_n(x)+\frac{1}{n})f_n(x).证明:存在唯一的正数a,使得对于所有n0<f_n(x)<f_{n+1}(a)<1.


练习题5.\displaystyle\sum\limits_{n=1}^{\infty}a_n为正项收敛级数,\displaystyle r_n=\sum\limits_{k=n}^{\infty}a_k,0<p<1,证明:\sum\limits_{n=1}^{\infty}\frac{a_n}{r_n^p}<\frac{1}{1-p}\left(\sum\limits_{n=1}^{\infty}a_n \right)^{1-p}.


练习题6.设a>0,a_n是一个数列,并且a_n>0,a_{n+1}\ge a_n,证明:\sum\limits_{n=1}^{\infty}\frac{a_n-a_{n-1}}{a_na_{n-1}^a}收敛.

证:首先可以确定给定的级数是正项级数.

(1)当0<a<1时,我们利用Lagrange中值定理,有\frac{{a_n^a - a_{n - 1}^a}}{{{a_n} - {a_{n - 1}}}} = a{\xi ^{a - 1}} \ge aa_n^{a - 1},\quad \xi  \in \left( {{a_{n - 1}},{a_n}} \right).

因此\frac{{{a_n} - {a_{n - 1}}}}{{{a_n}a_{n - 1}^a}} = \frac{{a_n^a - a_{n - 1}^a}}{{a_n^aa_{n - 1}^a}} \cdot \left( {\frac{{{a_n} - {a_{n - 1}}}}{{a_n^a - a_{n - 1}^a}} \cdot a_n^{a - 1}} \right) \le \frac{1}{a}\frac{{a_n^a - a_{n - 1}^a}}{{a_n^aa_{n - 1}^a}} = \frac{1}{a}\left( {\frac{1}{{a_{n - 1}^a}} - \frac{1}{{a_n^a}}} \right).

\sum\limits_{n = 1}^\infty  {\frac{{{a_n} - {a_{n - 1}}}}{{{a_n}a_{n - 1}^a}}}  \le \frac{1}{a}\sum\limits_{n = 1}^\infty  {\left( {\frac{1}{{a_{n - 1}^a}} - \frac{1}{{a_n^a}}} \right)}  = \frac{1}{a}\left( {\frac{1}{{a_0^a}} - \mathop {\lim }\limits_{n \to \infty } \frac{1}{{a_n^a}}} \right).

由于\{a_n\}是单增的正数列,则{\mathop {\lim }\limits_{n \to \infty } \frac{1}{{a_n^a}}}必定存在,由此可知原正项级数收敛;

(2)当a\geq1时,由\sum\limits_{n = 1}^\infty  {\frac{{{a_n} - {a_{n - 1}}}}{{{a_n}a_{n - 1}^a}}}  = \sum\limits_{n = 1}^\infty  {\left( {\frac{1}{{a_{n - 1}^a}} - \frac{{a_{n - 1}^{1 - a}}}{{{a_n}}}} \right)}  \le \sum\limits_{n = 1}^\infty  {\left( {\frac{1}{{a_{n - 1}^a}} - \frac{1}{{a_n^a}}} \right)}  = \frac{1}{a}\left( {\frac{1}{{a_0^a}} - \mathop {\lim }\limits_{n \to \infty } \frac{1}{{a_n^a}}} \right)同样可知原正项级数收敛.

综上,级数\sum\limits_{n=1}^{\infty}\frac{a_n-a_{n-1}}{a_na_{n-1}^a}收敛.


练习题7.设\displaystyle S(x)=\sum\limits_{n=1}^{\infty}\frac{2n}{(n^2 +x^2)^2},证明:\frac{1}{x^2 +\frac{1}{2\zeta(3)}}<S(x)<\frac{1}{x^2 +\frac{1}{6}},其中\displaystyle \zeta(3)=\sum\limits_{n=1}^{\infty}\frac{1}{n^3}.


练习题8.给定序列\{a_n\},且a_n满足a_1=2,a_2=8,a_n=4a_{n-1}-a_{n-2}(n=3,4,\ldots),证明:\sum\limits_{n=1}^{\infty}\text{arccot}\,\,a_n^2=\frac{\pi}{12}.


证.由{a_n} + {a_{n - 2}} = 4{a_{n - 1}}可知{a_n}\left( {{a_n} + {a_{n - 2}}} \right) = 4{a_{n - 1}}{a_n} = {a_{n - 1}}\left( {{a_{n + 1}} + {a_{n - 1}}} \right),递推得a_n^2 - {a_{n + 1}}{a_{n - 1}} = a_{n - 1}^2 - {a_n}{a_{n - 2}} = \cdots = a_2^2 - {a_3}{a_1} = 4.

 

注意到\mathrm{arccot\,} x的一个公式

\mathrm{arccot\,} x-\mathrm{arccot\,} y=\mathrm{arccot\,}\left( \frac{1+xy}{y-x}\right).

因此有

\begin{align*}\mathrm{arccot\,} a_n^2 &= \mathrm{arccot\,} \frac{{{a_n} \cdot 4{a_n}}}{4} = \mathrm{arccot\,} \frac{{{a_n}\left( {{a_{n + 1}} + {a_{n - 1}}} \right)}}{4} =\mathrm{arccot\,} \frac{{{a_n}\left( {{a_{n + 1}} + {a_{n - 1}}} \right)}}{{a_n^2 - {a_{n + 1}}{a_{n - 1}}}}\\& = \mathrm{arccot\,} \frac{{1 + \frac{{{a_{n + 1}}}}{{{a_{n - 1}}}}}}{{\frac{{{a_n}}}{{{a_{n - 1}}}} - \frac{{{a_{n + 1}}}}{{{a_n}}}}} = \mathrm{arccot\,} \frac{{{a_{n + 1}}}}{{{a_n}}} -\mathrm{arccot\,} \frac{{{a_n}}}{{{a_{n - 1}}}}.\end{align*}

易得\mathop {\lim }\limits_{n \to \infty } \frac{{{a_{n + 1}}}}{{{a_n}}} = 2 + \sqrt 3 .

\sum\limits_{n = 1}^\infty {\mathrm{arccot\,} a_n^2} = \mathrm{arccot\,} a_1^2 + \sum\limits_{n = 2}^\infty {\mathrm{arccot\,} a_n^2} = \mathop {\lim }\limits_{n \to \infty } \mathrm{arccot\,} \frac{{{a_{n + 1}}}}{{{a_n}}} - \mathrm{arccot\,} \frac{{{a_2}}}{{{a_1}}} + \mathrm{arccot\,} a_1^2 = \frac{\pi }{{12}}.


练习题9.设\displaystyle a_n=\arctan \frac{1}{n^2 +n +1},证明: \sum\limits_{k=1}^{\infty}\frac{a_k^{1/2}}{k^2} \le \sqrt{\frac{\pi}{3}}.


证.注意到

\begin{align*}\sum\limits_{k = 1}^\infty  {{a_k}}  &= \sum\limits_{k = 1}^\infty  {\arctan \frac{1}{{{k^2} + k + 1}}}  = \sum\limits_{k = 1}^\infty  {\left( {\arctan \frac{1}{k} - \arctan \frac{1}{{k + 1}}} \right)}  = \frac{\pi }{4}\\\sum\limits_{k = 1}^\infty  {\frac{1}{{{k^4}}}}  &= \zeta \left( 4 \right) = \frac{{{\pi ^4}}}{{90}}.\end{align*}

由Cauchy-Schwarz不等式可知

\sum\limits_{k = 1}^N {\frac{1}{{{k^4}}}}  \cdot \sum\limits_{k = 1}^N {{a_k}}  \ge {\left( {\sum\limits_{k = 1}^N {\frac{{a_k^{1/2}}}{{{k^2}}}} } \right)^2}.

N\to\infty,我们有\sum\limits_{k = 1}^\infty  {\frac{{a_k^{1/2}}}{{{k^2}}}}  \le \sqrt {\frac{{{\pi ^4}}}{{90}} \cdot \frac{\pi }{4}}  = \sqrt {\frac{{{\pi ^5}}}{{360}}}  < \sqrt {\frac{\pi }{3}} .

也可通过放缩实现\sum\limits_{k = 1}^\infty  {\frac{1}{{{k^4}}}}  = 1 + \sum\limits_{k = 2}^\infty  {\frac{1}{{{k^4}}}}  < 1 + \sum\limits_{k = 2}^\infty  {\frac{1}{{\left( {k + 1} \right)\left( {k + 2} \right)}}}  = \frac{4}{3}.


练习题10.设\displaystyle a_n > 0, S_n=\sum\limits_{k=1}^na_k,证明:

(1)\displaystyle\sum\limits_{n=1}^{\infty}\frac{n}{S_n} \le 2 \sum\limits_{n=1}^{\infty}\frac{1}{a_n};
(2)\displaystyle\sum\limits_{n=1}^{\infty}\frac{2n+1}{S_n} \le 4 \sum\limits_{n=1}^{\infty}\frac{1}{a_n}.

证.(1)由柯西不等式我们得

\sum\limits_{m = 1}^n {\frac{{{m^2}}}{{{a_m}}}} \sum\limits_{m = 1}^n {{a_m}}  \ge {\left( {1 + 2 +  \cdots  + n} \right)^2} = \frac{1}{4}{n^2}{\left( {n + 1} \right)^2},

\frac{n}{{{a_1} + {a_2} +  \cdots  + {a_n}}} \le \frac{4}{{n{{\left( {n + 1} \right)}^2}}}\sum\limits_{m = 1}^n {\frac{{{m^2}}}{{{a_m}}}} .

因此

\begin{align*}\sum\limits_{n = 1}^\infty  {\frac{n}{{{a_1} + {a_2} +  \cdots  + {a_n}}}}  &\le 4\sum\limits_{n = 1}^\infty  {\frac{1}{{n{{\left( {n + 1} \right)}^2}}}\sum\limits_{m = 1}^n {\frac{{{m^2}}}{{{a_m}}}} }  = 4\sum\limits_{m = 1}^\infty  {\frac{{{m^2}}}{{{a_m}}}\sum\limits_{n = m}^\infty  {\frac{1}{{n{{\left( {n + 1} \right)}^2}}}} } \\&\le 4\sum\limits_{m = 1}^\infty  {\frac{{{m^2}}}{{{a_m}}}\sum\limits_{n = m}^\infty  {\frac{1}{2}\left[ {\frac{1}{{{n^2}}} - \frac{1}{{{{\left( {n + 1} \right)}^2}}}} \right]} }  = 2\sum\limits_{m = 1}^\infty  {\frac{1}{{{a_m}}}} .\end{align*}

这里用到了\frac{1}{{n{{\left( {n + 1} \right)}^2}}} \le \frac{1}{2}\frac{{2n + 1}}{{{n^2}{{\left( {n + 1} \right)}^2}}} = \frac{1}{2}\left[ {\frac{1}{{{n^2}}} - \frac{1}{{{{\left( {n + 1} \right)}^2}}}} \right].

 

注意到a_n=n^\alpha,\alpha>1时有

\mathop {\lim }\limits_{\alpha \to 1} \frac{{\sum\limits_{n = 1}^\infty {\frac{n}{{{a_1} + {a_2} + \cdots + {a_n}}}} }}{{\sum\limits_{j = 1}^\infty {\frac{1}{{{a_j}}}} }} = \mathop {\lim }\limits_{\alpha \to 1} \mathop {\lim }\limits_{N \to \infty } \frac{{\sum\limits_{n = 1}^N {\frac{n}{{{1^\alpha } + {2^\alpha } + \cdots + {n^\alpha }}}} }}{{\sum\limits_{n = 1}^N {\frac{1}{{{n^\alpha }}}} }} = \mathop {\lim }\limits_{\alpha \to 1} \mathop {\lim }\limits_{N \to \infty } \frac{{\frac{N}{{\frac{1}{{\alpha + 1}}{N^{\alpha + 1}} + O\left( {{N^\alpha }} \right)}}}}{{\frac{1}{{{N^\alpha }}}}} = 2.

(2)如法炮制.由柯西不等式我们得

\sum\limits_{m = 1}^n {\frac{{{m^2}}}{{{a_m}}}} \sum\limits_{m = 1}^n {{a_m}} \ge {\left( {1 + 2 + \cdots + n} \right)^2} = \frac{1}{4}{n^2}{\left( {n + 1} \right)^2},

\frac{{2n + 1}}{{{a_1} + {a_2} + \cdots + {a_n}}} \le \frac{{4\left( {2n + 1} \right)}}{{{n^2}{{\left( {n + 1} \right)}^2}}}\sum\limits_{m = 1}^n {\frac{{{m^2}}}{{{a_m}}}} .

因此

\begin{align*}\sum\limits_{n = 1}^\infty {\frac{{2n + 1}}{{{a_1} + {a_2} + \cdots + {a_n}}}} &\le 4\sum\limits_{n = 1}^\infty {\frac{{2n + 1}}{{{n^2}{{\left( {n + 1} \right)}^2}}}\sum\limits_{m = 1}^n {\frac{{{m^2}}}{{{a_m}}}} } = 4\sum\limits_{m = 1}^\infty {\frac{{{m^2}}}{{{a_m}}}\sum\limits_{n = m}^\infty {\frac{{2n + 1}}{{{n^2}{{\left( {n + 1} \right)}^2}}}} } \\&= 4\sum\limits_{m = 1}^\infty {\frac{{{m^2}}}{{{a_m}}}\sum\limits_{n = m}^\infty {\left[ {\frac{1}{{{n^2}}} - \frac{1}{{{{\left( {n + 1} \right)}^2}}}} \right]} } = 4\sum\limits_{m = 1}^\infty {\frac{1}{{{a_m}}}}.\end{align*}


练习题11.设\displaystyle a_n \ge 0, n=1,2,\ldots,\sum\limits_{n=1}^{\infty}a_n < \infty,证明:

\sum\limits_{n=1}^{\infty}(a_1a_2\cdots a_n)^{\frac{1}{n}} \le e \sum\limits_{n=1}^{\infty}a_n,且证明e是最优值.

此题再拓展下求证:\sum\limits_{n=1}^{\infty}(a_1a_2\cdots a_n)^{\frac{1}{n}} \le e \sum\limits_{n=1}^{\infty}[1-\frac{1}{2(n+1)}]a_n.

 


练习题12.如果正项级数\displaystyle \sum\limits_{n=1}^{\infty}\frac{1}{p_n}收敛,证明:级数\displaystyle \sum\limits_{n=1}^{\infty}\frac{n^2}{(p_1+p_2+\cdots+p_n)^2}p_n也收敛.


练习题13.设\displaystyle \sum\limits_{n=1}^{\infty}a_n为正项级数,且\displaystyle \sum\limits_{k=1}^{n}(a_k-a_n)n有界,a_n单调递减趋于0,证明:级数\displaystyle \sum\limits_{n=1}^{\infty}a_n收敛.


练习题14.设级数\displaystyle \sum\limits_{n=1}^{\infty}a_n收敛, \displaystyle \sum\limits_{n=1}^{\infty}(b_{n+1}-b_n)绝对收敛,证明:级数\displaystyle \sum\limits_{n=1}^{\infty}a_nb_n收敛.


练习题15.设a_n>0,\left\{ a_n-a_{n+1}\right\}为一个严格递减的数列.如果\sum_{n=1}^{\infty}a_n收敛。试证:\lim\limits_{n \to \infty}\left( \cfrac{1}{a_{n+1}}-\cfrac{1}{a_n}\right)=+\infty.


练习题16.能否构造一个收敛数列\sum\limits_{n=1}^{\infty}a_n,使得级数\sum\limits_{n=1}^{\infty}a_n^3发散.


练习题17.设\lim \limits_{n\rightarrow +\infty}x_n=+\infty,正项级数\sum\limits_{n=1}^{\infty}y_n收敛,设n_0是某一自然数,

若当n>n_0时有x_n <x_{n+1},x_n< \frac{1}{2}(x_{n-1}+x_{n+1}),y_{n+1}< y_n,
求证:\lim \limits_{n\rightarrow +\infty}\frac{x_ny_n}{x_{n+1}-x_n}=0.

练习题18.设\sum\limits_{n=1}^{\infty}a_n是一正项收敛级数,且有a_{n+1}< \frac{1}{2}(a_n+a_{n+2}),\,\frac{1}{a_{n+2}}-\frac{1}{a_{n+1}}\le \frac{1}{3}(\frac{1}{a_{n+3}}-\frac{1}{a_{n}}),

求极限\lim\limits_{n \rightarrow +\infty}\frac{\displaystyle a_na_{n+2}(a_n-a_{n+1})}{\displaystyle a_na_{n+1}-2a_na_{n+2}+a_{n+1}a_{n+2}}.

\sin n^2类似的一些问题

1.证明: \sum_{k=1}^n\sin k^2无界.


参看: http://www.zhihu.com/question/29094450


2.证明\mathop {\lim }\limits_{n \to \infty } \frac{1}{n}\sum\limits_{k = 1}^n {\sin \sqrt k }  = 0.

这个极限可以从《数学分析习题课讲义》下册第 39 页的一系列习题的结论推得.
==================================================
引理1.  设级数 \displaystyle\sum_{n=1}^\infty a_nb_n 收敛,如果 b_n\searrow0,n\to\infty, 那么有\lim_{n\to\infty}(a_1+a_2+\cdots+a_n)b_n=0.
 
证明很容易,对每一个 n\in\mathbf N_+, 记 c_n=a_nb_n, 则 a_n=\frac{c_n}{b_n}(b_n\neq0), 然后对 \displaystyle\sum_{i=1}^n\frac{c_i}{b_i} 作一次 Abel 变换就可以做出来了.
 
推论2. 设级数 \displaystyle\sum_{n=1}^\infty\frac{a_n}{n} 收敛,那么有\lim_{n\to\infty}\frac{a_1+a_2+\cdots+a_n}{n}=0.
 
在引理1中取 b_n=\frac{1}{n},n=1,2,\cdots, 再利用引理1就能得到上面的推论.
 
引理3. 设函数 f\in C^1[1,+\infty), 如果 \displaystyle\int_1^\infty|f'(x)|\mathrm{d}x 收敛, 那么广义积分 \displaystyle\int_1^\infty f(x)\mathrm{d}x 与无穷级数 \displaystyle\sum_{n=1}^\infty f(n) 有相同的敛散性.
 
证明大概思路: 由 Newton-Leibniz 定理可知 \lim\limits_{x\to+\infty}f(x)=A 存在且有限.如果 A\neq0, 则显然广义积分 \displaystyle\int_1^\infty f(x)\mathrm{d}x 与无穷级数 \displaystyle\sum_{n=1}^\infty f(n) 都发散.如果 A=0, 此时记S_n=\int_1^n f(x)\mathrm{d}x,T_n=\sum_{i=1}^nf(i),n=1,2,\cdots,则数列 \{S_n\} 与广义积分 \displaystyle\int_1^\infty f(x)\mathrm{d}x 敛散性相同.余下来就是证明\lim_{m\to\infty,\atop n\to\infty}|(S_m-S_n)-(T_m-T_n)|=0,这点很简单,注意到 \displaystyle\int_1^\infty|f'(x)|\mathrm{d}x 收敛就行了.
 
==================================================
命题4. \lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n\sin\sqrt i=0.
 
由推论2,只要能够证明到级数 \displaystyle\sum_{n=1}^\infty\frac{\sin\sqrt n}{n} 收敛就行了,再依据引理3, 只要能够证明到广义积分 \displaystyle\int_1^\infty\frac{\sin\sqrt x}{x}\mathrm{d}x 收敛就可以了.而事实上又有\int_1^\infty\frac{\sin\sqrt x}{x}\mathrm{d}x=2\int_1^\infty\frac{\sin t}{t}\mathrm{d}t,它是收敛的,这样就得到了你的问题的证明.

一个与多项式分拆有关的级数题

求证:对于\forall k\in N_+,必有\sum\limits_{n = 1}^\infty  {\frac{{{n^k}}}{{n!}}}e的整数倍.
证明.先证明一个引理:对\forall k\in N_+,均有{n^k} = {a_0}n + {a_1}n\left( {n - 1} \right) + {a_2}n\left( {n - 1} \right)\left( {n - 2} \right) +  \cdots  + {a_k}n\left( {n - 1} \right)\left( {n - 2} \right) \cdots \left( {n - k+1} \right)成立,其中a_1+a_2+\ldots+a_i+\ldots+a_{k-1}(i=0,1,2,\ldots,k)为整数(事实上,a_i均为正整数,i\in N^+).
证明.写得规范点,我们有:{x^k} = {a_0}x + {a_1}x\left( {x - 1} \right) + {a_2}x\left( {x - 1} \right)\left( {x - 2} \right) +  \cdots  + {a_{k-1}}x\left( {x - 1} \right)\left( {x - 2} \right) \cdots \left( {x - k+1} \right).
比较两边x^k的系数得知a_{k-1}=1,即
\begin{align*}&x\left( {x - 1} \right)\left( {x - 2} \right) \cdots \left( {x - k + 1} \right) = {x^k} - {a_{k - 2}}x\left( {x - 1} \right)\left( {x - 2} \right) \cdots \left( {x - k + 2} \right) \\&-  \cdots  - {a_2}x\left( {x - 1} \right)\left( {x - 2} \right) - {a_1}x\left( {x - 1} \right) - {a_0}x.\end{align*}
 
再比较两边x^{k-1}的系数得a_{k-2}=\frac{k(k-1)}{2},由此
\frac{{{{\left( {1 + 2 +  \cdots  + \left( {k - 1} \right)} \right)}^2} - \left( {{1^2} + {2^2} +  \cdots  + {{\left( {k - 1} \right)}^2}} \right)}}{2} = \left( {1 + 2 +  \cdots  + \left( {k - 2} \right)} \right){a_{k - 2}} - {a_{k - 3}}.{a_{k - 3}} = \frac{{\left( {3k - 5} \right)\left( {k - 2} \right)\left( {k - 1} \right)k}}{{24}}.
一般地,考察等式两边x^n的系数我们有
\begin{align*}&{\left( { - 1} \right)^{k - n}}\sum\limits_{1 \le {k_1} < {k_2} <  \cdots  < {k_{k - n}} \le k - 1} {{k_1}{k_2} \cdots {k_{k - n}}}  = {\left( { - 1} \right)^{k - n}}{a_{k - 2}}\sum\limits_{1 \le {k_1} < {k_2} <  \cdots  < {k_{k - n - 1}} \le k - 2} {{k_1}{k_2} \cdots {k_{k - n - 1}}} \\&+ {\left( { - 1} \right)^{k - n - 1}}{a_{k - 3}}\sum\limits_{1 \le {k_1} < {k_2} <  \cdots  < {k_{k - n - 2}} \le k - 3} {{k_1}{k_2} \cdots {k_{k - n - 2}}}  +  \cdots  + {\left( { - 1} \right)^2}{a_n}\sum\limits_{1 \le {k_1} \le n} {{k_1}} {x^n} + {\left( { - 1} \right)^1}{a_{n - 1}}.\end{align*}
依此递推式得a_0=1.a_i,i=0,1,\ldots,k-2均为正整数.
回到原题,我们有
\begin{align*}\sum\limits_{n = 1}^\infty  {\frac{{{n^k}}}{{n!}}}  &= \sum\limits_{n = 1}^\infty  {\frac{{{a_0}n + {a_1}n\left( {n - 1} \right) + {a_2}n\left( {n - 1} \right)\left( {n - 2} \right) +  \cdots  + {a_{k - 1}}n\left( {n - 1} \right)\left( {n - 2} \right) \cdots \left( {n - k + 1} \right)}}{{n!}}} \\&= {a_0}\sum\limits_{n = 1}^\infty  {\frac{1}{{\left( {n - 1} \right)!}}}  + {a_1}\sum\limits_{n = 2}^\infty  {\frac{1}{{\left( {n - 2} \right)!}}}  + {a_2}\sum\limits_{n = 3}^\infty  {\frac{1}{{\left( {n - 3} \right)!}}}  +  \cdots  + {a_{k - 1}}\sum\limits_{n = k}^\infty  {\frac{1}{{\left( {n - k} \right)!}}} \\&= \left( {{a_0} + {a_1} + {a_2} +  \cdots {a_{k - 1}}} \right)e = Ne.\end{align*}

\sum{\frac{n}{{{e^{2\pi n}} - 1}}}型的级数求解

两个结论:\left\{ \begin{array}{l}\sum\limits_{n = 1}^\infty  {\frac{n}{{{e^{2\pi n}} - 1}}}  = \frac{1}{{24}} - \frac{1}{{8\pi }}\\\sum\limits_{n = 0}^\infty  {\frac{{2n + 1}}{{{e^{\pi \left( {2n + 1} \right)}} + 1}}}  = \frac{1}{{24}}\end{array} \right..

Proof.What you require here are the Eisenstein series. In particular the evaluation of

 
E_2(\tau) = 1 – 24\sum_{n=1}^\infty \frac{ne^{2\pi i n \tau} }{1 - e^{2\pi i n \tau}},
 
at \tau = i. Rearrange to get
 
\sum_{n=1}^\infty \frac{ne^{2\pi i n \tau} }{1 - e^{2\pi i n \tau} } = \frac{1}{24}(1 – E_2(i) ).
 
See Lambert series for additional information.
 
The function
 
G_ 2(\tau) = \zeta(2) \left(1 – 24\sum_{n=1}^\infty \frac{ne^{2\pi i n \tau} }{1 - e^{2\pi i n \tau}} \right)=\zeta(2)E_2(\tau)
 
satisfies the quasimodular transformation
 
G_ 2\left( \frac{a\tau+b}{c\tau+d} \right) =(c\tau+d)^2G_ 2(\tau) - \pi i c (c\tau + d).
 
And so with a=d=0, c=1 and b=-1 we find G_ 2(i) = \pi/2. Therefore
 
E_2(i) = \frac{ G_ 2( i)}{ \zeta(2)} = \frac{\pi}{2}\frac{6}{\pi^2} = \frac{3}{\pi}.
 
Hence we obtain
 
\sum_{n=1}^\infty \frac{n}{e^{2\pi n} – 1} = \frac{1}{24} - \frac{1}{8\pi},
 
as given in the comment to the question by Slowsolver.
 
 
There is a very nice generalisation of the sum in the question.
 
For odd m > 1 we have
 
\sum_{n=1}^\infty \frac{n^{2m-1} }{ e^{2\pi n} -1 } = \frac{B_{2m}}{4m},
 
where B_k are the Bernoulli numbers defined by
 
\frac{z}{{{e^z} - 1}} = \sum\limits_{k = 0}^\infty  {\frac{{{B_k}}}{{k!}}} {z^k}\;\;\; for |z|<2\pi .
另解:
\displaystyle\mathcal{M}\Big[\frac{x}{e^{2\pi x}-1}] = \int_{0}^{\infty} \frac{x^{s}}{e^{2 \pi x}-1} \ dx = (2\pi)^{-(s+1)}\Gamma(s+1)\zeta(s+1)
 
So \displaystyle  \frac{x}{e^{2\pi x}-1}=\frac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty}(2\pi)^{-(s+1)}\Gamma(s+1)\zeta(s+1) x^{-s}\ ds
 
which implies \displaystyle \sum_{n=1}^{\infty}\frac{n}{e^{2\pi n}-1}=\frac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty}(2\pi)^{-(s+1)}\Gamma(s+1)\zeta(s+1)\zeta(s)\ ds
 
The integrand has poles at s=-1, s=0, and s=1 (and removable singularities at s= -2, -3, -4, \ldots)
 
I'm going to close the contour with a rectangle that has vertices at -i \infty, \frac{3}{2} - i \infty, \frac{3}{2} + i \infty, and \;i \infty and is indented at the origin
 
\Gamma(s) decays rapidly as \text{Im} (s) \to \pm \infty. So the integral goes to zero along the top and bottom of the rectangle.
 
And on the imaginary axis, the integrand is odd.
 
So \displaystyle \int_{\frac{3}{2}-i\infty}^{\frac{3}{2}+i\infty}(2\pi)^{-s}\Gamma(s+1)\zeta(s+1)\zeta(s)\ ds-\pi i \text{Res}[f,0] = 2\pi i\text{Res}[f,1]
 
where \displaystyle f(s) = (2\pi)^{-(s+1)}\Gamma(s+1)\zeta(s+1)\zeta(s) .
 
\displaystyle \text{Res}[f,0] = \lim_{s \to 0} s (2 \pi)^{-(s+1)} \Gamma(s+1) \zeta(s+1) \zeta(s) = \lim_{s\to 0} s\zeta(s+1) (2\pi)^{-(s+1)}\Gamma(s+1)\zeta(s)
 
= 1\Big(\frac{1}{2 \pi} \Big)(1)\zeta(0)=-\frac{1}{4 \pi}
 
\displaystyle\text{Res}[f,1] = \lim_{s \to 1} (s-1) (2 \pi)^{-(s+1)} \Gamma(s+1) \zeta(s+1) \zeta(s)
 
= \displaystyle \lim_{s\to 1}(s-1)\zeta(s) (2\pi)^{-(s+1)}\Gamma(s+1)\zeta(s+1)= 1\Big(\frac{1}{4 \pi^{2}}\Big)(1)\Big(\frac{\pi^{2}}{6}\Big) =\frac{1}{24}
 
Therefore,  \displaystyle \sum_{n=1}^{\infty} \frac{n}{e^{2 \pi n}-1} = \frac{1}{2 \pi i} \Big( 2 \pi i  (\frac{1}{24}) +  \pi i (\frac{-1}{4 \pi}) \Big) = \frac{1}{24} - \frac{1}{8 \pi}.
 
Poof.We will use the Mellin transform technique. Recalling the Mellin transform and its inverse
 
F(s) =\int_0^{\infty} x^{s-1} f(x)dx, \quad\quad f(x)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} x^{-s} F(s)\, ds.  
 
 
Now, let's consider the function
 
f(x)= \frac{x}{e^{\pi x}+1}.
 
Taking the Mellin transform of f(x), we get
 
F(s)={\pi }^{-s-1}\Gamma  \left( s+1 \right)  \left(1- {2}^{-s} \right) \zeta  \left( s+1 \right),
 
where \zeta(s) is the zeta function. Representing the function in terms of the inverse Mellin Transform, we have
 
\frac{x}{e^{\pi x}+1}=\frac{1}{2\pi i}\int_{C}{\pi }^{-s-1}\Gamma  \left( s+1 \right)  \left( 1-{2}^{-s} \right) \zeta  \left( s+1 \right) x^{-s}ds.
 
Substituting x=2n+1 and summing yields
 
\sum_{n=0}^{\infty}\frac{2n+1}{e^{\pi (2n+1)}+1}=\frac{1}{2\pi i}\int_{C}{\pi}^{-s-1}\Gamma  \left( s+1 \right)\left(1-{2}^{-s} \right) \zeta\left( s+1 \right) \sum_{n=0}^{\infty}(2n+1)^{-s}ds
 
= \frac{1}{2\pi i}\int_{C}{\pi }^{-s-1}\Gamma  \left( s+1 \right)  \left(1-{2}^{-s} \right)^2\zeta\left( s+1 \right) \zeta(s)ds.
 
Now, the only contribution of the poles comes from the simple pole s=1 of \zeta(s) and the residue equals to \frac{1}{24}. So, the sum is given by
 
\sum_{n=0}^{\infty}\frac{2n+1}{e^{\pi (2n+1)}+1}=\frac{1}{24}
 
Notes: 1)  
 
 
\sum_{n=0}^{\infty}(2n+1)^{-s}= \left(1- {2}^{-s} \right) \zeta  \left( s \right).  
 
2) The residue of the simple pole s=1, which is the pole of the zeta function, can be calculated as
 
r = \lim_{s=1}(s-1)({\pi }^{-s-1}\Gamma  \left( s+1 \right)  \left({2}^{-s}-1 \right)^2\zeta\left( s+1 \right) \zeta(s))
 
 =  \lim_{s\to 1}(s-1)\zeta(s)\lim_{s\to 1}  {\pi }^{-s-1}\Gamma  \left( s+1 \right)  \left({2}^{-s}-1 \right)^2\zeta\left( s+1 \right)  = \frac{1}{24}.
 
For calculating the above limit, we used the facts
 
\lim_{s\to 1}(s-1)\zeta(s)=1, \quad \zeta(2)=\frac{\pi^2}{6}.
 
3) Here is the technique for computing the Mellin transform of f(x)
Using the change of variables u=-\ln(x) and the identity
 
\int_{0}^{\infty}\frac{u^{s-1}}{e^u -1}=\zeta{(s)}\Gamma{(s)}
 
we reach to the deisred result
 
\int_0^1 \frac{\ln x }{x-1}= \int_{0}^{\infty}\frac{u}{e^u -1}=\zeta{(2)}\Gamma{(2)} =\sum_{n=1}^\infty \frac{1}{n^2}.
 
Note that,
 
\int_{0}^{\infty}\frac{u^{s-1}}{e^u - 1}=\int_{0}^{\infty}\frac{u^{s-1}}{e^u}(1-e^{-u})^{-1}= \sum_{n=0}^{\infty} \int_{0}^{\infty}{u^{s-1}e^{-(n+1)u}} 
 
= \sum_{n=0}^{\infty}\frac{1}{(n+1)^s} \int_{0}^{\infty}{y^{s-1}e^{-y}}= \sum_{n=1}^{\infty}\frac{1}{n^s} \Gamma(s)= \zeta(s) \Gamma(s).
 
另一个积分公式:
 
 
If Re(s)>1,Re(q)>0,define\zeta(s,q)=\sum_{n=0}^{\infty}\frac1{(q+n)^s}.,then the function has an integral representation in terms of the Mellin transform as \zeta(s,q)=\frac{1}{\Gamma(s)} \int_0^\infty \frac{t^{s-1}e^{-qt}}{1-e^{-t}}dt.
 
 
 
链接:[1]http://math.stackexchange.com/questions/8884/summing-frac1e2-pi-1-frac2e4-pi-1-frac3e6-pi-1-c
[2]http://math.stackexchange.com/questions/392706/evaluating-sum-n-1-infty-fracne2-pi-n-1-using-the-inverse-melli?lq=1
[3]http://math.stackexchange.com/questions/389146/proof-of-frac1e-pi1-frac3e3-pi1-frac5e5-pi1-ldots/389168#389168
 

Euler Sum的若干研究

本文主要展示并分享有关Euler Sum的若干求解问题。

问题一:求\sum_{n=1}^\infty{\frac{H_n}{n^q}}

Solution.

\begin{align}&\sum_{j=0}^k\zeta(k+2-j)\zeta(j+2)\\&=\sum_{m=1}^\infty\sum_{n=1}^\infty\sum_{j=0}^k\frac1{m^{k+2-j}n^{j+2}}\tag{1}\\&=(k+1)\zeta(k+4)+\sum_{\substack{m,n=1\\m\ne n}}^\infty\frac1{m^2n^2}\frac{\frac1{m^{k+1}}-\frac1{n^{k+1}}}{\frac1m-\frac1n}\tag{2}\\&=(k+1)\zeta(k+4)+\sum_{\substack{m,n=1\\m\ne n}}^\infty\frac1{nm^{k+2}(n-m)}-\frac1{mn^{k+2}(n-m)}\tag{3}\\&=(k+1)\zeta(k+4)+2\sum_{m=1}^\infty\sum_{n=m+1}^\infty\frac1{nm^{k+2}(n-m)}-\frac1{mn^{k+2}(n-m)}\tag{4}\\&=(k+1)\zeta(k+4)+2\sum_{m=1}^\infty\sum_{n=1}^\infty\frac1{(n+m)m^{k+2}n}-\frac1{m(n+m)^{k+2}n}\tag{5}\\&=(k+1)\zeta(k+4)\\&+2\sum_{m=1}^\infty\sum_{n=1}^\infty\frac1{m^{k+3}n}-\frac1{(m+n)m^{k+3}}\\&-2\sum_{m=1}^\infty\sum_{n=1}^\infty\frac1{m(n+m)^{k+3}}+\frac1{n(n+m)^{k+3}}\tag{6}\\&=(k+1)\zeta(k+4)+2\sum_{m=1}^\infty\frac{H_m}{m^{k+3}}-4\sum_{n=1}^\infty\sum_{m=1}^\infty\frac1{n(n+m)^{k+3}}\tag{7}\\&=(k+1)\zeta(k+4)+2\sum_{m=1}^\infty\frac{H_m}{m^{k+3}}-4\sum_{n=1}^\infty\sum_{m=n+1}^\infty\frac1{nm^{k+3}}\tag{8}\\&=(k+1)\zeta(k+4)+2\sum_{m=1}^\infty\frac{H_m}{m^{k+3}}-4\sum_{n=1}^\infty\sum_{m=n}^\infty\frac1{nm^{k+3}}+4\zeta(k+4)\tag{9}\\&=(k+5)\zeta(k+4)+2\sum_{m=1}^\infty\frac{H_m}{m^{k+3}}-4\sum_{m=1}^\infty\sum_{n=1}^m\frac1{nm^{k+3}}\tag{10}\\&=(k+5)\zeta(k+4)+2\sum_{m=1}^\infty\frac{H_m}{m^{k+3}}-4\sum_{m=1}^\infty\frac{H_m}{m^{k+3}}\tag{11}\\&=(k+5)\zeta(k+4)-2\sum_{m=1}^\infty\frac{H_m}{m^{k+3}}\tag{12}\end{align}
 
Letting q=k+3 and reindexing j\mapsto j-1 yields
\sum_{j=1}^{q-2}\zeta(q-j)\zeta(j+1)=(q+2)\zeta(q+1)-2\sum_{m=1}^\infty\frac{H_m}{m^q}\tag{13}
and finally
\sum_{m=1}^\infty\frac{H_m}{m^q}=\frac{q+2}{2}\zeta(q+1)-\frac12\sum_{j=1}^{q-2}\zeta(q-j)\zeta(j+1)\tag{14}
 
Explanation
 
\hphantom{0}(1) expand \zeta  
\hphantom{0}(2) pull out the terms for m=n and use the formula for finite geometric sums on the rest  
\hphantom{0}(3) simplify terms  
\hphantom{0}(4) utilize the symmetry of \frac1{nm^{k+2}(n-m)}+\frac1{mn^{k+2}(m-n)}  
\hphantom{0}(5) n\mapsto n+m and change the order of summation  
\hphantom{0}(6) \frac1{mn}=\frac1{m(m+n)}+\frac1{n(m+n)}  
\hphantom{0}(7) H_m=\sum_{n=1}^\infty\frac1n-\frac1{n+m} and use the symmetry of \frac1{m(n+m)^{k+3}}+\frac1{n(n+m)^{k+3}}  
\hphantom{0}(8) m\mapsto m-n  
\hphantom{0}(9) subtract and add the terms for m=n  
(10) combine \zeta(k+4) and change the order of summation  
(11) H_m=\sum_{n=1}^m\frac1n  
(12) combine sums  
 

 

 

 

 

参考文献

[1]

[2]

一个级数求解

\sum\limits_{n = 1}^\infty  {\frac{{\ln n}}{{{n^2}}}}  =  - \frac{{{\pi ^2}}}{6}\left( { - 12\ln A + \gamma  + \ln 2 + \ln \pi } \right).
证明:(Glaisher–Kinkelin constant)\boxed{\ln A = \mathop {\lim }\limits_{n \to \infty } \left[ {\frac{{{n^2}}}{4} - \left( {\frac{{{n^2}}}{2} + \frac{n}{2} + \frac{1}{{12}}} \right)\ln n + \sum\limits_{k = 1}^n {k\ln k} } \right].}
(Riemann zeta函数的导函数)\boxed{\zeta '\left( s \right) =  - \sum\limits_{k = 1}^\infty  {\frac{{\ln k}}{{{k^s}}}} .}
(Gamma 函数)
\Gamma \left( s \right) = \int_0^\infty  {{x^{s - 1}}{e^{ - x}}dx}.
首先,证明\zeta'(-1)=\frac{1}{12}-\ln A.
 
再证明\Gamma'(2)=1-\gamma.
\Gamma '\left( 2 \right) = \int_0^\infty  {x{e^{ - x}}\ln xdx}  = \int_0^\infty  {\left( {{e^{ - x}} + {e^{ - x}}\ln x} \right)dx}  = 1 - \gamma .
 
利用
\zeta \left( s \right) = {2^s}{\pi ^{s - 1}}\sin \frac{{\pi s}}{2}\Gamma \left( {1 - s} \right)\zeta \left( {1 - s} \right).
s=-1,我们有\zeta{-1}=-\frac{1}{12}.
两边同取对数得
\ln \zeta \left( s \right) = s\ln 2 + \left( {s - 1} \right)\ln \pi  + \ln \sin \frac{{\pi s}}{2} + \ln \Gamma \left( {1 - s} \right) + \ln \zeta \left( {1 - s} \right).
求导,得到\frac{{\zeta '\left( s \right)}}{{\zeta \left( s \right)}} = \ln \left( {2\pi } \right) + \frac{\pi }{{2\tan \frac{{\pi s}}{2}}} - \frac{{\Gamma '\left( {1 - s} \right)}}{{\Gamma \left( {1 - s} \right)}} - \frac{{\zeta '\left( {1 - s} \right)}}{{\zeta \left( {1 - s} \right)}}.
s=-1,我们有
\frac{{\zeta '\left( { - 1} \right)}}{{\zeta \left( { - 1} \right)}} = 12\ln A - 1 = \ln \left( {2\pi } \right) - 1 + \gamma  - \frac{{\zeta '\left( 2 \right)}}{{\zeta \left( 2 \right)}}.
 
\Rightarrow \zeta '\left( 2 \right) = \frac{{{\pi ^2}}}{6}\left( {\ln \left( {2\pi } \right) - 12\ln A + \gamma } \right).
 
因此我们得到\sum\limits_{n = 1}^\infty  {\frac{{\ln n}}{{{n^2}}}}  =  - \frac{{{\pi ^2}}}{6}\left( { - 12\ln A + \gamma  + \ln 2 + \ln \pi } \right).