Loading [MathJax]/jax/output/HTML-CSS/jax.js
Eufisky - The lost book

无穷套根式的一些特殊情形(Nested Radical)

情形一:(Vieta)2π=1212+121212+1212+1212.

情形二:x=n(1q)xn+qxn1n(1q)xn+qxn1n.

有以下几种特殊情形:

b+b2+4a2=a+ba+ba+b(n=2,q=1ax2,x=bq)x=nxn1nxn1nxn1n(q=1)x=xxxx(q=1,n=2).
情形二:由以上情形可推得:qnk1n1xnj=nqnk+1nn1(1q)xnj+1+nqnk+2nn1(1q)xnj+2+n.
特殊情形有:
2=2220+2221+2222+2223+2224+(q=12,n=2,x=1,k=1).
情形三:n1x=nxnxnx.
由于
{1+1n+1n2+=1+1n11n+1n2+1n3+=1n11n(1+1n(1+1n(1+)))=1n1(n2,nN+).
n=3,我们有x=3x3x3x.
情形四: (Ramanujan)
x+n+a=ax+(n+a)2+xa(x+n)+(n+a)2+(x+n)a(x+2n)+(n+a)2+(x+2n).
特殊地,有x+1=1+x1+(x+1)1+(x+2)1+(a=0,n=1).由此有我们熟知的
3=1+21+31+41+5(a=0,n=1,x=2).
The justification of this process both in general and in the particular example of lnσ, where σ is Somos's quadratic recurrence constant in given by Vijayaraghavan (in Ramanujan 2000, p. 348).

情形五:

由下面两式

{e=1+11!+12!+13!+e=1+1+12(1+13(1+14(1+15(1+))))

xe2=x3x4x5x.

参考资料

[1] http://mathworld.wolfram.com/NestedRadical.html#eqn13