无穷套根式的一些特殊情形(Nested Radical)
情形一:(Vieta)2π=√12√12+12√12√12+12√12+12√12⋯.
情形二:x=n√(1−q)xn+qxn−1n√(1−q)xn+qxn−1n√⋯.
有以下几种特殊情形:
b+√b2+4a2=√a+b√a+b√a+b√⋯(n=2,q=1−ax2,x=bq)x=n√xn−1n√xn−1n√xn−1n√⋯(q=1)x=√x√x√x√x√⋯(q=1,n=2).
情形二:由以上情形可推得:qnk−1n−1xnj=n√qnk+1−nn−1(1−q)xnj+1+n√qnk+2−nn−1(1−q)xnj+2+n√⋯.
特殊情形有:
√2=√2220+√2221+√2222+√2223+√2224+⋯(q=12,n=2,x=1,k=−1).
情形三:n−1√x=n√xn√xn√x⋯.
由于
{1+1n+1n2+⋯=1+1n−11n+1n2+1n3+⋯=1n−11n(1+1n(1+1n(1+⋯)))=1n−1(n≥2,n∈N+).
令n=3,我们有√x=3√x3√x3√x⋯.
情形四: (Ramanujan)
x+n+a=√ax+(n+a)2+x√a(x+n)+(n+a)2+(x+n)√a(x+2n)+(n+a)2+(x+2n)√⋯.
特殊地,有x+1=√1+x√1+(x+1)√1+(x+2)√1+⋯(a=0,n=1).由此有我们熟知的
3=√1+2√1+3√1+4√1+5√⋯(a=0,n=1,x=2).
The justification of this process both in general and in the particular example of lnσ, where σ is Somos's quadratic recurrence constant in given by Vijayaraghavan (in Ramanujan 2000, p. 348).
情形五:
由下面两式
{e=1+11!+12!+13!+⋯e=1+1+12(1+13(1+14(1+15(1+⋯))))
得
xe−2=√x3√x4√x5√x⋯.
参考资料