Processing math: 16%
Eufisky - The lost book

中科院数学系统院2016年夏令营试题

中国科学院数学与系统科学研究院

2016 年大学生数学夏令营考试试卷

考生须知:

1. 本试卷满分为100 分,全部考试时间总计120 分钟。

2. 所有答案必须写在答题纸上,写在试题纸上或草稿纸上一律无效。


1.(10分)确定矩阵分别为

(123201313),(130311015)的二次型在下列域上是否等价:

(a)实数域.(b)有理数域?

 

2.(10分)设W1,W2V的子空间,如果W1W2=V.证明:或者V=W1,或者V=W2.

 

3.(15分)设Vn维实向量空间, φ:VV是线性映射.

χφ(t)=(tλ1)(tλn),(λiC)φ的特征多项式.

试证明:或者λiR(1in),或者V有一个2维不变子空间WV,使φ|W的特征多项式不可约.

 

4.(15分) 设(V,<,>)n维欧氏空间, V表示由所有线性函数VR组成的对偶空间.试证明:

(1)映射VV,v↦<,v>是线性同构.

(2)对任意线性映射f:VV.验证映射f:VV.f()=f是对偶空间的线性映射.

(3)对任意线性映射φ:VV,存在唯一线性映射φ:VV满足:<φ(x),y>=<x,φ(y)>,x,yV.

 

5.(10分) 证明:当x1时,n=0xn212π1x.

证明:由Lagrange中值定理可知x(n+1)2<n+1nxt2dt=xξ2<xn2,ξ(n,n+1).

因此0xt2dt=n=0n+1nxt2dt<n=0xn2n=0xn2=1+n=0x(n+1)2<1+n=0n+1nxt2dt=1+0xt2dt,

0xt2dt<n=0xn2<1+0xt2dt.

0xt2dt=0et2lnxdt=1ln1x0eu2du=π21ln1x.

注意到lntt1t,t1+

我们有ln1x1x,x1

因此0xt2dt=π21ln1xπ211x=12π1x.


6.(10分) 证明:圆的所有外切三角形中,以正三角形的面积为最小.

证明:不妨假设此圆是单位圆,其外切三角形周长为2p=a+b+c.由海伦公式可知S=12a+12b+12c=p(pa)(pb)(pc).2p=a+b+c=2(pa)(pb)(pc)因此S=p\geqslant\sqrt{27},当且仅当a=b=c时取等成立.


7.(15分)设\varphi(x)表示实数x与其最近整数间之差的绝对值.令f(x)=\sum_{k=0}^\infty \frac{\varphi(4^k x)}{4^k}.证明:

(1)(5分). f(x)(-\infty,+\infty)上处处连续;

(2)(10分). f(x)(-\infty,+\infty)上处处不可微.

 

8.(15分)设f(x)\in C[0,+\infty),且对任何非负实数a,有\lim_{x\to\infty}(f(x+a)-f(x))=0.证明:存在g(x)\in C[0,+\infty)h(x)\in C^1[0,+\infty),使得: f(x)=g(x)+h(x),且满足\lim_{x\to\infty}g(x)=0,\lim_{x\to\infty}h'(x)=0.

中科院数学系统院高校招生考试试题

 

 愿以一朵花的姿态行走世间,看得清世间繁杂却不在心中留下痕迹,花开成景,花落成诗。

 

 

1 浙大考题

 

中国科学院大学

2016 年高校招生考试:数学(甲卷)

 满分100分,考试时间120分钟

 

1. (15分)求\int_0^{ + \infty } {\frac{{{e^{ - ax}} - {e^{ - bx}}}}{x}dx} \quad \left( {b > a} \right).

 

2. (15分) \sum_{i=1}^n a_n发散, a_n为正项级数.求证:

(1) \sum_{i=1}^\infty \frac{a_n}{S_n}发散;

(2) \sum_{i=1}^\infty \frac{a_{n+1}}{S_n}发散.

 

3. (15分) 求

\int\limits_{{x^2} + {y^2} + {z^2} = {R^2}} {\frac{{dS}}{{\sqrt {{x^2} + {y^2} + {{\left( {z - h} \right)}^2}} }}} .

 

4. (15分) 设A:V\to V,{H_{A,\alpha }}\left( t \right) = \left\{ {\varphi \left( t \right)\left| {\varphi \left( x \right) \in Q\left[ t \right],\varphi \left( x \right) \cdot \alpha = 0} \right.} \right\}中次数最小的一个.证: \exists \alpha \in V,使{H_{A,\alpha }}\left( t \right)A的极小多项式.

 

1.1 某同学面试问题

 

1. 求\int_{ - \infty }^{ + \infty } {\frac{1}{{\left( {1 + {x^2}} \right)\left( {1 + {x^6}} \right)}}dx} .

 

2. 举一个无穷次可导却不解析的函数.

 

2 湖南大学考题

 

中国科学院大学

2016 年高校招生考试:数学(乙卷)

满分100分,考试时间120分钟

 

1. (15分)

(1) 求极限\mathop {\lim }_{x \to - \infty } \left( {\sqrt {\left( {x + a} \right)\left( {x + b} \right)} + x} \right);

 

(2) 设f(x)满足f\left( x \right) + 2f\left( {\frac{1}{x}} \right) = \frac{3}{x},求f(x)的导数;

 

(3) 求\mathop {\lim }_{n \to \infty } \sqrt[n]{{\frac{{{n^n}}}{{n!}}}}.

 

2. (15分)设r\geq 0,求积分\frac{1}{{2\pi }}\int_0^{2\pi } {\log \left( {1 - 2r\cos x + {r^2}} \right)dx} .

 

 

 

3. (10分)设0<\mu <1,a>0, M_ne^{-(x+ax^\mu )x^n}(0,+\infty)上的最大值.求\mathop {\lim }\limits_{n \to \infty } {\left( {\frac{{{M_n}}}{{n!}}} \right)^{{n^{ - \mu }}}}.

 

4. (10分)设函数f(x)在闭区间[a,b]上二次连续可微,并且f(a)=f(b)=0.证明不等式:

{M^2} \le \frac{{{{\left( {b - a} \right)}^3}}}{2}\int_a^b {{{\left| {f''\left( x \right)} \right|}^2}dx} ,其中M=\sup_{a\leq x\leq b}|f(x)|.

 

5. (10分)设A = \left( {\begin{array}{*{20}{c}}4&0\\0&1\end{array}} \right),B = \left( {\begin{array}{*{20}{c}}{\cos \theta }&{ - \sin \theta }\\{\sin \theta }&{\cos \theta }\end{array}} \right)\left( {\begin{array}{*{20}{c}}3&0\\0&{ - 2}\end{array}} \right){\left( {\begin{array}{*{20}{c}}{\cos \theta }&{ - \sin \theta }\\{\sin \theta }&{\cos \theta }\end{array}} \right)^{ - 1}},求以下矩阵的特征根:

A + B,A \otimes \left( {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right) + \left( {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right) \otimes B,A \otimes B.

 

注:对A = \left( {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}\\{{a_{21}}}&{{a_{22}}}\end{array}} \right),B = \left( {\begin{array}{*{20}{c}}{{b_{11}}}&{{b_{12}}}\\{{b_{21}}}&{{b_{22}}}\end{array}} \right),张量积定义为A \otimes B = \left( {\begin{array}{*{20}{c}}{{a_{11}}B}&{{a_{12}}B}\\{{a_{21}}B}&{{a_{22}}B}\end{array}} \right).

 

6. (10分)证明以下矩阵组成的集合是实数域上的线性空间,求其维数及一组基,并证明行列式\det X是二次型,写出其对应的双线性型.

M = \left\{ {X = \left( {\begin{array}{*{20}{c}}{{x_0} + {x_3}}&{{x_1} - i{x_2}}\\{{x_1} + i{x_2}}&{{x_0} - {x_3}}\end{array}} \right):{x_0},{x_1},{x_2},{x_3} \in \mathbb{R} } \right\}.

 

7. (20分)设可逆矩阵A\in M_n(\mathbb C)的特征值为\lambda_1,\cdots,\lambda_n.求线性变换

M_n(\mathbb C)\to M_n(\mathbb C),\quad X\mapsto AXA'

的全部特征值.

 

注:M_n(\mathbb C)表示定义在复数域\mathbb C上的n阶方阵.

 

 

 

 

3 西安交大考题

 

中国科学院大学

2016 年高校招生考试:数学(乙卷)

满分100分,考试时间120分钟

1. (15分)

 

(1) 求极限\mathop {\lim }_{x \to - \infty } \left( {\sqrt {\left( {x + a} \right)\left( {x + b} \right)} + x} \right);

 

(2) 设f(x)满足f\left( x \right) + 2f\left( {\frac{1}{x}} \right) = \frac{3}{x},求f(x)的导数;

 

(3) 设f:[0,1]\to R连续,求\mathop {\lim }_{n \to \infty } \int_0^1 {\int_0^1 \cdots } \int_0^1 {f\left( {\frac{{{x_1} \cdots {x_n}}}{n}} \right)d{x_1}d{x_2} \cdots d{x_n}} .

 

解法一.|f|最大值为M.对任何\varepsilon>0,存在\delta>0,使得当|x-1/2|<\delta时,有\left|f(x)-f(\frac{1}{2})\right|<\varepsilon.

\begin{align*}&\int_{[0,1]^n}\left| f\left(\frac{x_1+x_2+\cdots+x_n}{n}\right)-f(\frac{1}{2})\right|dx_1dx_2\cdots dx_n\\\leq &\int_{\left|\frac{x_1+x_2+\cdots+x_n}{n}-\frac{1}{2}\right|\geq\delta}\left| f\left(\frac{x_1+x_2+\cdots+x_n}{n}\right)-f(\frac{1}{2})\right|dx_1dx_2\cdots dx_n\\+&\int_{\left|\frac{x_1+x_2+\cdots+x_n}{n}-\frac{1}{2}\right|<\delta}\left| f\left(\frac{x_1+x_2+\cdots+x_n}{n}\right)-f(\frac{1}{2})\right|dx_1dx_2\cdots dx_n\\\leq&2M\int_{\left|\frac{x_1+x_2+\cdots+x_n}{n}-\frac{1}{2}\right|\geq\delta}dx_1dx_2\cdots dx_n+\varepsilon\\\leq&\frac{2M}{\delta^2}\int_{\left|\frac{x_1+x_2+\cdots+x_n}{n}-\frac{1}{2}\right|\geq\delta}\left|\frac{x_1+x_2+\cdots+x_n}{n}-\frac{1}{2}\right|^2dx_1dx_2\cdots dx_n+\varepsilon\\\leq&\frac{2M}{\delta^2}\int_{[0,1]^n}\left|\frac{x_1+x_2+\cdots+x_n}{n}-\frac{1}{2}\right|^2dx_1dx_2\cdots dx_n+\varepsilon\\=&\frac{M}{6n\delta^2}+\varepsilon.\end{align*}

因此\limsup_{n\rightarrow\infty}\int_{[0,1]^n}\left| f\left(\frac{x_1+x_2+\cdots+x_n}{n}\right)-f(\frac{1}{2})\right|dx_1dx_2\cdots dx_n\leq \varepsilon.

\varepsilon\rightarrow0即可.

 

解法二.由科尔莫格罗夫强大数定律得\frac{{{X_1} + {X_2} + \cdots + {X_n}}}{n}\mathop \to \limits^{a.s.} E\left( {{X_i}} \right) = \frac{1}{2}\left( {n \to + \infty } \right).

又因为f(x)连续有界,由控制收敛定理可知

\mathop {\lim }\limits_{n \to \infty } E\left( {f\left( {\frac{{{X_1} + {X_2} + \cdots + {X_n}}}{n}} \right)} \right) = E\left( {\mathop {\lim }\limits_{n \to \infty } f\left( {\frac{{{X_1} + {X_2} + \cdots + {X_n}}}{n}} \right)} \right) = E\left( {f\left( {\mathop {\lim }\limits_{n \to \infty } \frac{{{X_1} + {X_2} + \cdots + {X_n}}}{n}} \right)} \right) = f\left( {\frac{1}{2}} \right).

 

2. (15分)设r\geq 0,求积分\frac{1}{{2\pi }}\int_0^{2\pi } {\log \left( {1 - 2r\cos x + {r^2}} \right)dx} .

 

 

3. (20分)设0<\mu <1,a>0, M_ne^{-(x+ax^\mu )x^n}(0,+\infty)上的最大值.求\mathop {\lim }\limits_{n \to \infty } {\left( {\frac{{{M_n}}}{{n!}}} \right)^{{n^{ - \mu }}}}.

 

4. (10分)设m为正整数,方程a\equiv b \mod m定义为m能整除a-b.当m取何值时,以下线性方程组有整数解?

\left\{ \begin{array}{l}x + 2y - z \equiv 1\left( {\bmod m} \right),\\2x - 3y + z \equiv 4\left( {\bmod m} \right),\\4x + y - z \equiv 9\left( {\bmod m} \right).\end{array} \right.

 

5. (10分)设A = \left( {\begin{array}{*{20}{c}}4&0\\0&1\end{array}} \right),B = \left( {\begin{array}{*{20}{c}}{\cos \theta }&{ - \sin \theta }\\{\sin \theta }&{\cos \theta }\end{array}} \right)\left( {\begin{array}{*{20}{c}}3&0\\0&{ - 2}\end{array}} \right){\left( {\begin{array}{*{20}{c}}{\cos \theta }&{ - \sin \theta }\\{\sin \theta }&{\cos \theta }\end{array}} \right)^{ - 1}},求以下矩阵的特征根: A + B,A \otimes \left( {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right) + \left( {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right) \otimes B,A \otimes B.

 

注:对A = \left( {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}\\{{a_{21}}}&{{a_{22}}}\end{array}} \right),B = \left( {\begin{array}{*{20}{c}}{{b_{11}}}&{{b_{12}}}\\{{b_{21}}}&{{b_{22}}}\end{array}} \right),张量积定义为A \otimes B = \left( {\begin{array}{*{20}{c}}{{a_{11}}B}&{{a_{12}}B}\\{{a_{21}}B}&{{a_{22}}B}\end{array}} \right).

 

6. (10分)证明以下矩阵组成的集合是实数域上的线性空间,求其维数及一组基,并证明行列式\det X是二次型,写出其对应的双线性型.

M = \left\{ {X = \left( {\begin{array}{*{20}{c}}{{x_0} + {x_3}}&{{x_1} - i{x_2}}\\{{x_1} + i{x_2}}&{{x_0} - {x_3}}\end{array}} \right):{x_0},{x_1},{x_2},{x_3} \in \mathbb{R} } \right\}.

 

7. (20分)设\Omega为含有n个元素的有限集合, 2^\Omega\Omega的幂集(即\Omega的所有子集构成的集合).对任意A,B\in 2^\Omega,定义数乘0A=\emptyset(空集), 1A=A,加法A+B=(A\cup B)\backslash (A\cap B)(对称差).

 

(1) 证明2^\Omega关于以上数乘及加法为域Z_2=\{0,1\} (注意在此域上1+1=0)上的线性空间,求其维数.

(2) 求2^\Omega的一维子空间个数.

(3) 取定非空X\in 2^\Omega,定义线性算子T_X:2^\Omega\mapsto 2^\OmegaT_X A=A\cap X,A\in 2^\Omega.求T_X的极小多项式,特征多项式,特征值和相应的特征子空间.

 

 

4 吉大考题

 

中国科学院大学

2016 年高校招生考试:数学(丙卷)

满分100分,考试时间120分钟

1. (15分)计算

 

(1) 求极限\mathop {\lim }_{n \to \infty } \frac{{{1^{\alpha - 1}} + \cdots + {n^{\alpha - 1}}}}{{{n^\alpha }}} \quad {\alpha > 0} .

 

(2) 已知f'(a)存在,f(a)\neq0,求\mathop {\lim }_{n \to \infty } {\left( {\frac{{f\left( {a + \frac{1}{n}} \right)}}{{f\left( a \right)}}} \right)^n}.

 

 

(3) 设f:[0,1]\to \mathbb R连续,求\mathop {\lim }\limits_{n \to \infty } \int_0^1 {\int_0^1 \cdots } \int_0^1 {f\left( {{{\left( {{x_1} \cdots {x_n}} \right)}^{1/n}}} \right)d{x_1}d{x_2} \cdots d{x_n}} .

 

2. (15分)设\phi (x)>0,f(x)>0都是[a,b]上连续函数,求\mathop {\lim }\limits_{n \to \infty } \sqrt[n]{{\int_a^b {\phi \left( x \right){{\left( {f\left( x \right)} \right)}^n}dx} }}.

 

3. (20分)证明\binom n1 - \frac{1}{2}\binom n2 + \frac{1}{3} \binom n3 - \cdots + (-1)^{n-1}\frac1n\binom nn = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}.

 

4. (10分)设x,y都是复数域上n阶方阵,定义x^{(0)}=x,x^{(1)}=[x,y]\equiv xy-yx,x^{(j)}=[x^{(j-1)},y].证明

\sum\limits_{i = 0}^k {{y^i}x{y^{k - i}}} = \sum\limits_{j = 0}^k {\binom{k + 1}{j + 1} {y^{k - j}}{x^{\left( j \right)}}} .

 

5. (10分)给出平面中以下三条不同直线相交于一点的条件

ax+by+c=0,\quad bx+cy+a=0,\quad cx+ay+b=0.

求以下矩阵能对角化的条件:

\left( {\begin{array}{*{20}{c}}0&1&0\\0&0&1\\a&b&c\end{array}} \right).

 

6. (10分) 给出M_2(\mathbb C)中幂零矩阵所张成的线性空间的一组基.描述M_n(\mathbb C)中幂零矩阵所张成的线性空间.

 

7. (20分)证明\cos x是超越函数.

 

注:函数f(x)称为超越函数,如果不存在有限多个不全为零的a_{pq},p,q=0,1,2,\cdots,使得

\sum\limits_{p,q}a_{pq} x^p (f(x))^q=0,\quad \forall x\in \mathbb R.

 

5 大连理工考题

 

中国科学院大学

2016 年高校招生考试:数学(丁卷)

满分100分,考试时间120分钟

 

1. (15分)计算

 

(1) 求{\sqrt 2 ^{{{\sqrt 2 }^{{{\sqrt 2 }^ \cdots }}}}};

 

(2) 求\mathop {\lim }\limits_{n \to \infty } \sqrt[n]{{\frac{{{n^n}}}{{n!}}}};

 

(3) 求不定积分\int {\frac{{x\ln x}}{{{{\left( {1 + {x^2}} \right)}^2}}}dx}.

 

2. (15分)设\phi (x)>0,f(x)>0都是[a,b]上连续函数,求

\mathop {\lim }\limits_{n \to \infty } \frac{{\int_a^b {\phi \left( x \right){{\left( {f\left( x \right)} \right)}^{n + 1}}dx} }}{{\int_a^b {\phi \left( x \right){{\left( {f\left( x \right)} \right)}^n}dx} }}.

 

3. (20分) 设f(x)[a,b]上可微函数, f(a)=f(b)=0,但f(x)不恒等于零,则存在\xi\in (a,b)使得

\left| {f'\left( \xi \right)} \right| > \frac{4}{{{{\left( {b - a} \right)}^2}}}\int_a^b {f\left( x \right)dx} .

 

4. (10分)设m为正整数,方程a\equiv b \mod m定义为m能整除a-b.当m取何值时,以下线性方程组有整数解?

\left\{ \begin{array}{l}x \equiv 1\left( {\bmod \,2} \right),\\x \equiv 2\left( {\bmod \,3} \right),\\x\equiv 4\left( {\bmod \,5} \right).\end{array} \right.

 

5. (10分)证明代数数集合为可数集.

 

注:一个数称为代数数,如果它是某个系数为有理数的多项式的根.

 

6. (10分)设n\geq2,矩阵A=(a_{ij})\in M_{n\times n}(\mathbb Z)的每个元素要么是-3,要么是4,即a_{ij}\in \{-3,4\}. (1)设S是所有这些矩阵的和,求S及其秩\mathrm{rank}\, S; (2)证明行列式|A^2|7^{2n-2}的倍数,即7^{2n-2} |\, |A^2|.

 

7. (20分)设A = \left( {\begin{array}{*{20}{c}}a&1&0\\0&a&1\\0&0&a\end{array}} \right)\in M_{3\times 3}(\mathbb C),多项式p(x)\in \mathbb C[x].

 

(1)证明: p\left( A \right) = \left( {\begin{array}{*{20}{c}}{p\left( a \right)}&{p'\left( a \right)}&{p''\left( a \right)/2}\\0&{p\left( a \right)}&{p'\left( a \right)}\\0&0&{p\left( a \right)}\end{array}} \right). \quad (2)求e^A.

 

 

 

6 中科大考题

 

证明ABBA有相同的特征多项式.

 

7 山大考题

 

 

中国科学院大学

2016 年高校招生考试:数学(X卷)

满分100分,考试时间120分钟

 

1. (15分)计算

 

(1) 求\mathop {\lim }_{x \to 0} \frac{{\sqrt {1 + \tan x} - \sqrt {1 + \sin x} }}{{{x^3}}};

 

(2) 求f(x)=x^{x^x}的导数;

 

(3) 求\mathop {\lim }\limits_{n \to \infty } \int_0^1 {\int_0^1 \cdots } \int_0^1 {\frac{{x_1^2 + x_1^2 + \cdots + x_n^2}}{{{x_1} + {x_2} + \cdots + {x_n}}}d{x_1}d{x_2}d{x_n}} .

 

2. (15分)已知f\left( x \right) = \prod_{i = 1}^k {\left( {x - {a_i}} \right)} ,且 - \frac{{f'\left( x \right)}}{{f\left( x \right)}} = {c_0} + {c_1}x + {c_2}{x^2} + \cdots + {c_n}{x^n} + \cdots ,\mathop {\lim }\limits_{n \to \infty } \frac{{{c_n}}}{{{c_{n - 1}}}}\mathop {\lim }\limits_{n \to \infty } \sqrt[n]{{{c_n}}}.

 

3. (20分) a,b为实数, x^3+abx+b在复数域上有重根,则a,b应满足什么条件?

 

4. (10分)求{\left( {\begin{array}{*{20}{c}}{{e^{i\theta }}}&{2i\sin \alpha }\\0&{{e^{i\theta }}}\end{array}} \right)^n}.

 

 

8 厦大考题

 

1. A,B特征值不同, f_A,f_B为其特征多项式.

 

(1) 存在g(\lambda),h(\lambda)使得g(B)f_A(B)=I,h(A)g_B(A)=I.

 

(2) AX-XB=0只有零解;

 

(3) AX-XB=C有唯一解.

 

2. 设f(x)=\frac1{1-x-x^2},证明\sum_{n=1}^\infty\frac{n!}{f^{(n)}(0)}收敛,其中f^{(n)}(0)表示f(x)0点的n阶导数.

中科院研究生学费及奖助学金政策解读

研究生奖助学金设置
国科大研究生奖助学金的设置,包括国家助学金、国家奖学金、中科院奖学金、国科大学业奖学金、研究所奖学金、"助研/助教/助管"岗位津贴(简称"三助津贴"),共计六个类别。
 
 
"国家助学金",按照国家财政拨款统一标准实行。现行资助标准为,博士生12000元/年•生, 硕士生6000元/年•生,覆盖100%研究生。将由国科大统一发放到国科大专属建行卡中,硕士每月500,博士每月1000。
 
 
"国家奖学金",按照当年国家财政拨款额度及要求实施。现行标准为:博士生3万元/生、硕士生2万元/生,覆盖约2-3%研究生,每年9-10月开展评选工作。需要申请
 
 
"中科院奖学金",是指中国科学院设立的各类优秀奖学金。按照院设立及冠名联合设立的相关意愿和要求,由院教育主管部门、国科大及中科院研究生教育基金会统筹安排,按年度通知各研究所进行申报,并组织评选发放。需要申请
 
 
"国科大学业奖学金",由国科大统筹国家财政拨款和学费收入设立,面向按统一规定缴纳学费的全日制研究生。具体由国科大按照博士生13000元/年•生、硕士生8000元/年•生的标准以及100%缴纳学费研究生规模,核定当年各研究所"国科大学业奖学金"总额;各研究所每年9-10月开展评选工作。只要交学费或者缓交学费的都会全额一次性返还,硕士正好抵消学费,博士还有多余的3000,具体方案由研究所制定。
 
 
"研究所奖学金",是指由研究所自行设立的各类优秀奖学金。由研究所筹措经费、制定规则、组织评审、安排发放。应该是每个人都有,金额从几百到上千都有
 
 
"三助津贴",是指由学校职能部门、研究所、实验室、导师等根据工作需要,设置的"助研/助教/助管"岗位及相应津贴。按照岗位职责贡献与津贴待遇相对应的原则,由设岗部门负责筹措经费、设立岗位、确定职责、履行考核、安排发放。导师发放的钱就在这部分,属于助研津贴,标准各所自行制定,金额从几百到几千都有。