Eufisky 的留言簿

给 Eufisky 留言

登录 *


loading captcha image...
(输入验证码)
or Ctrl+Enter

Avatar_small
Htasebock 说:
2017年5月11日 03:13

get payday loan
<a href="https://paydayloansonlinecashadvance.online/">payday loans online same day</a>
best payday loans
<a href="https://paydayloansonlinecashadvance.online/">best payday loans</a> ’

Avatar_small
Rerdbock 说:
2017年5月11日 03:13

cash advances - https://paydayloansonlinecashadvance.online/
payday advance loans <a href="https://paydayloansonlinecashadvance.online/">cash advance usa</a> ’

Avatar_small
Lorvtbock 说:
2017年5月11日 03:00

bad credit loans - https://quickcashloansbadcredit.online/
cash advance loans <a href="https://quickcashloansbadcredit.online/">payday loan</a> ’

Avatar_small
Lerv#bock 说:
2017年5月10日 18:25

best payday loans ’
https://lutpaydayloansonlinefastpaydayloan.com/

Avatar_small
Ldwer#bock 说:
2017年5月10日 18:00

cash advances ’
<a href="https://berpaydayloanlendersquickloans.com/">payday loans online</a>
cash advances
<a href="https://berpaydayloanlendersquickloans.com/">payday loan online</a>

Avatar_small
Ldase#bock 说:
2017年5月10日 17:10

bad credit payday loans ’
<a href="https://resbestpersonalloansquickonline.com/">bad credit personal loans</a>
quick personal loans
<a href=https://resbestpersonalloansquickonline.com/>same day payday loans</a>

Avatar_small
Ferda#bock 说:
2017年5月09日 22:06

easy personal loan ’
https://resbestpersonalloansquickonline.com/

Avatar_small
Lodwe#bock 说:
2017年5月09日 21:47

payday loans near me ’
https://berpaydayloanlendersquickloans.com/

Avatar_small
Young 说:
2017年5月09日 15:23

@Young: in additions f(z) bounded on the border

Avatar_small
Young 说:
2017年5月09日 15:05

Wow, nice work. I like it. And, er, I have difficulty in solving another question/exercise and I wanna go to seek help from you, if you'd like to.
This semester I serve as TA in Complex Analysis. Students ask me one difficult problem as follows, and I write it in the language of Tex

f(z) \epsilon H(D) \prod C(\bar{ D }), D={0< Im Z<1}. And
lim_{Im z=0, Re z \rightarrow \infty} f(z)=A exists. Prove that \forall 0<r<1, it holds that
lim_{Im z=r, Re z \rightarrow \infty} f(z)=A as well.

I feel strange that, it seems r=1 OK, but I cannot prove it. Too difficult.