# 武汉大学2014年基础数学复试笔试题回忆

Eufisky posted @ 2015年7月19日 23:28 in 考研 with tags 考研 武汉大学 , 901 阅读

1. 若$f(x)$的导函数当$x\to 0$时极限存在，证明$f(x)$在$0$点的导数存在。
2. 上述命题的逆命题是否成立？就是说$f(x)$在$0$点的导数存在是不是一定有$f(x)$在$x\to 0$的极限存在？成立请证明，否则给出反例。

$\int_{0}^{+\infty}\frac{\sin{xy}}{y(1+x)}dy$

$d(\varphi(x),\varphi(y))<d(x,y) \qquad (x\neq y,x,y\in E).$

$f(x)=\sum_{n=0}^{\infty}a_{n}x^{n}$

$\lim_{n\to\infty}na_{n}=0.$

$\frac{dy}{dx}=|y|^{\alpha}.$

$A=UT,$

1. 证明$f$是$\mathbb{C}^{2\times 2}$的线性变换;
2. 求$f$在$\mathbb{C}^{2\times 2}$的基

${E_{11}} = \left( {\begin{array}{*{20}{c}}1&0\\0&0\end{array}} \right),{E_{12}} = \left( {\begin{array}{*{20}{c}}0&1\\0&0\end{array}} \right),{E_{21}} = \left( {\begin{array}{*{20}{c}}0&0\\1&0\end{array}} \right),{E_{22}}= \left( {\begin{array}{*{20}{c}}0&0\\0&1\end{array}} \right)$

下的矩阵$M$.

3. 给出$\mathbb{C}^{2\times 2}$的两个非零的$f$不变子空间$V_1$和$V_2$,使得$\mathbb{C}^{2\times 2}=V_1\oplus V_2$,请阐述理由.
4. 证明:存在$\mathbb{C}^{2\times 2}$的一个基,使得$f$在这一基下的矩阵为对角矩阵当且仅当矩阵$A$与对角矩阵相似.

JDC Result Barisal 说:
2022年9月02日 06:06

In the Bangladesh Education System, Barisal board has a good record and the Barisal Division also successfully completed JSC and JDC terminal examination tests 2022 as per schedules along with all other educational boards of the country, JDC Result Barisal and there are a huge number of general and mass education students have appeared to the Grade 8 final exams from the division.The Bangladesh Secondary and Higher Secondary Education, Barisal Board has successfully completed the Junior Certificate & Junior Dakhil Terminal exams on November like as previous years, and the school education department has to conduct evaluation process through answer sheet corrections for both general and mass education JSC & JDC exam answer sheet to calculate subject wise marks of the student, once the evaluation is completed the JSC Result 2022 Barisal Board is announced with full mark sheet with total CGPA of the student.

(输入验证码)
or Ctrl+Enter