一个很好的积分题
背景是这个:
然后郝XX跟我说了下他的求法,还是挺有意思的!
求
\[\int_0^{2\pi } {{e^{\cos x}}\cos \left( {\sin x} \right)\cos nxdx} .\]
由Euler公式,我们有
\begin{align*}&{e^{y\cos x}}\cos \left( {y\sin x} \right) + i{e^{y\cos x}}\sin \left( {y\sin x} \right) = {e^{y\cos x}} \cdot {e^{iy\sin x}}\\=& {e^{y\cos x + iy\sin x}} = {e^{y\left( {\cos x + i\sin x} \right)}} = \sum\limits_{n = 0}^{ + \infty } {\frac{{{y^n}}}{{n!}}{{\left( {\cos x + i\sin x} \right)}^n}} \\=& \sum\limits_{n = 0}^{ + \infty } {\frac{{{y^n}}}{{n!}}{{\left( {\cos x + i\sin x} \right)}^n}} = \sum\limits_{n = 0}^{ + \infty } {\frac{{{y^n}}}{{n!}}\left( {\cos nx + i\sin nx} \right)} \\= &\sum\limits_{n = 0}^{ + \infty } {\frac{{{y^n}\cos nx}}{{n!}}} + i\sum\limits_{n = 0}^{ + \infty } {\frac{{{y^n}\sin nx}}{{n!}}} .\end{align*}
因此有
\[{e^{y\cos x}}\cos \left( {y\sin x} \right) = \sum\limits_{n = 0}^{ + \infty } {\frac{{{y^n}\cos nx}}{{n!}}} ,{e^{y\cos x}}\sin \left( {y\sin x} \right) = \sum\limits_{n = 0}^{ + \infty } {\frac{{{y^n}\sin nx}}{{n!}}} .\]
在第一个式子中令$y=1$,我们有
\[{e^{\cos x}}\cos \left( {\sin x} \right) = \sum\limits_{n = 0}^{ + \infty } {\frac{{\cos nx}}{{n!}}} .\]
因此我们有
\begin{align*}&\int_0^{2\pi } {{e^{\cos x}}\cos \left( {\sin x} \right)\cos nxdx} = \int_0^{2\pi } {\left( {\cos nx \cdot \sum\limits_{n = 0}^{ + \infty } {\frac{{\cos nx}}{{n!}}} } \right)dx} \\=& \int_0^{2\pi } {\left( {\cos nx \cdot \frac{{\cos nx}}{{n!}}} \right)dx} = \left\{ \begin{array}{l}\frac{\pi }{{n!}},n \ge 1\\2\pi ,n = 0\end{array} \right..\end{align*}
而对于无穷乘积\[\prod\limits_{n = 3}^\infty {\cos \frac{\pi }{{n!}}} \approx 0.858314.\]也就是管理员一分钟都不能禁他!!!
事实上,我们有