北京大学数学科学学院2015年直博生摸底考试试题解答
这份试题本来已经写好答案了,但因为电脑的事,里面文件都没了。下面重新给出解答:
2.(30分) 判断级数\sum\nolimits_{n = 2}^{ + \infty } {\frac{{{{\left( { - 1} \right)}^n}}}{{\sqrt n + {{\left( { - 1} \right)}^{\left[ {\sqrt n } \right]}}}}}的敛散性,其中[x]表示x的取整.
证:\begin{align*}\sum\limits_{n = 2}^{ + \infty } {\frac{{{{\left( { - 1} \right)}^n}}}{{\sqrt n + {{\left( { - 1} \right)}^{\left[ {\sqrt n } \right]}}}}} &= \sum\limits_{n = 2}^{ + \infty } {\frac{{{{\left( { - 1} \right)}^n}\left( {\sqrt n - {{\left( { - 1} \right)}^{\left[ {\sqrt n } \right]}}} \right)}}{{n - 1}}} \\&= \sum\limits_{n = 2}^{ + \infty } {\frac{{{{\left( { - 1} \right)}^n}\sqrt n }}{{n - 1}}} - \sum\limits_{n = 2}^{ + \infty } {\frac{{{{\left( { - 1} \right)}^{n + \left[ {\sqrt n } \right]}}}}{{n - 1}}}.\end{align*}

3.(30分) 证明\int_0^1 {\int_0^1 {\frac{1}{{{{\left( {xy} \right)}^{xy}}}}dxdy} } = \int_0^1 {\frac{1}{{{x^x}}}dx} = \sum\limits_{n = 1}^{ + \infty } {\frac{1}{{{n^n}}}} .
证:令u = xy,v = x,则x=v,y=\frac uv.由0\leq x,y\leq 1可知0\leq u\leq v,0\leq v\leq 1,

4.(25分) 设A是一个n阶方阵,且n\geq3.A^\ast是A的伴随矩阵(即A的代数余子式所组成的矩阵).试证明,若{(A^\ast)}^\ast\neq O (零矩阵),则A可逆,且此时{(A^\ast)}^\ast是A的一个纯量倍.

由此可知,当{(A^\ast)}^\ast\neq O 时,A可逆.再由A{A^ * } = \left| A \right|{I_n} \Rightarrow \left| {{A^ * }} \right| = {\left| A \right|^{n - 1}},{\left( {{A^ * }} \right)^{ - 1}} = \frac{1}{{\left| A \right|}}A及{A^ * }{\left( {{A^ * }} \right)^*} = \left| {{A^ * }} \right|{I_n}可知
{\left( {{A^ * }} \right)^*} = \left| {{A^ * }} \right|{\left( {{A^ * }} \right)^{ - 1}} = {\left| A \right|^{n - 1}} \cdot \frac{1}{{\left| A \right|}}A = {\left| A \right|^{n - 2}}A.由于{\left| A \right|^{n - 2}}是个定值,我们得知{(A^\ast)}^\ast是A的一个纯量倍.
5.(25分) 设A是一个3阶实方阵,考虑A所定义的线性变换\mathbb{R}^3\to\mathbb{R}^3,\alpha\to A\alpha ( \alpha是列向量).试证明:若AA'=A'A (其中A'是指A的转置矩阵),则上述线性变换必有一个2维不变子空间.
6.(25分) 设A和B是复数域\mathbb{C}上的两个n阶方阵,并且A有n个特征值1,2,\cdots,n, B也有n个特征值\sqrt{p_1},\cdots,\sqrt{p_n},其中p_1,\cdots,p_n是前n个素数(比如p_1=2,p_2=3等).试证明: M_n(\mathbb{C})上的线性变换X\to AXB是可以对角化的.
7.(25分) 设A = \left( {\begin{array}{*{20}{c}}{ - 2}&1&3\\{ - 2}&1&2\\{ - 1}&1&2\end{array}} \right),

由Cayley---Hamilton定理可知,f\left( A \right) = \left( {A + 1} \right){\left( {A - 1} \right)^2} = {A^3} - {A^2} - A + {I_n} = 0.
我们有
A = {A^3} + \left( {{A^2} - {A^4}} \right).取f\left( x \right) = {x^3},\varphi \left( x \right) = {x^2} - {x^4}即可.
8.几何部分共5道小题,每小题10分。

(2)设固定平面\Sigma的方程为Ax+By+Cz-a_t=0
- 若A^2+B^2=0即A=B=0时,方程退化成
z = \frac{{{a_t}}}{C},\left\{ \begin{array}{l}{x^2} + {y^2} - {z^2} = 1\\z = \frac{{{a_t}}}{C}\end{array} \right. \Rightarrow \frac{{{x^2}}}{{\frac{{a_t^2}}{{{C^2}}} + 1}} + \frac{{{y^2}}}{{\frac{{a_t^2}}{{{C^2}}} + 1}} = 1,
可知此时\Sigma_t\cap S为圆,当然可以看成是椭圆.
- 若A^2+B^2\neq0时,作坐标系旋转
\left\{ \begin{array}{l}{x_1} = \frac{B}{{\sqrt {{A^2} + {B^2}} }}x - \frac{A}{{\sqrt {{A^2} + {B^2}} }}y\\{y_1} = - \frac{{AC}}{{\sqrt {\left( {{A^2} + {B^2}} \right)\left( {{A^2} + {B^2} + {C^2}} \right)} }}x - \frac{{BC}}{{\sqrt {\left( {{A^2} + {B^2}} \right)\left( {{A^2} + {B^2} + {C^2}} \right)} }}y + \frac{{{A^2} + {B^2}}}{{\sqrt {\left( {{A^2} + {B^2}} \right)\left( {{A^2} + {B^2} + {C^2}} \right)} }}z\\{z_1} = \frac{A}{{\sqrt {{A^2} + {B^2} + {C^2}} }}x + \frac{B}{{\sqrt {{A^2} + {B^2} + {C^2}} }}y + \frac{C}{{\sqrt {{A^2} + {B^2} + {C^2}} }}z\end{array} \right.
即
\left\{ \begin{array}{l}x = \frac{B}{{\sqrt {{A^2} + {B^2}} }}{x_1} - \frac{{AC}}{{\sqrt {\left( {{A^2} + {B^2}} \right)\left( {{A^2} + {B^2} + {C^2}} \right)} }}{y_1} + \frac{A}{{\sqrt {{A^2} + {B^2} + {C^2}} }}{z_1}\\y = - \frac{A}{{\sqrt {{A^2} + {B^2}} }}{x_1} - \frac{{BC}}{{\sqrt {\left( {{A^2} + {B^2}} \right)\left( {{A^2} + {B^2} + {C^2}} \right)} }}{y_1} + \frac{B}{{\sqrt {{A^2} + {B^2} + {C^2}} }}{z_1}\\z = \frac{{\sqrt {{A^2} + {B^2}} }}{{\sqrt {{A^2} + {B^2} + {C^2}} }}{y_1} + \frac{C}{{\sqrt {{A^2} + {B^2} + {C^2}} }}{z_1}\end{array} \right.,
该平面方程化为{z_1} = \frac{{{a_t}}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}, S化为
x_1^2 + \frac{{{C^2} - {A^2} - {B^2}}}{{{A^2} + {B^2} + {C^2}}}y_1^2 - \frac{{{C^2} - {A^2} - {B^2}}}{{{A^2} + {B^2} + {C^2}}}z_1^2 - \frac{{4C\sqrt {{A^2} + {B^2}} }}{{{A^2} + {B^2} + {C^2}}} - 1 = 0,
则截面方程为
x_1^2 + \frac{{{C^2} - {A^2} - {B^2}}}{{{A^2} + {B^2} + {C^2}}}y_1^2 - \frac{{{C^2} - {A^2} - {B^2}}}{{{{\left( {{A^2} + {B^2} + {C^2}} \right)}^2}}}a_t^2 - \frac{{4C\sqrt {{A^2} + {B^2}} }}{{{A^2} + {B^2} + {C^2}}} - 1 = 0.显然\Sigma_t\cap S为椭圆.
综上可知, \Sigma_t\cap S总是椭圆.
(3)由(2)可知,在x_1y_1z_1坐标系中,椭圆的中心为
\left( {0,0,\frac{{{a_t}}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}} \right),即中心在z_1轴上,\left\{ \begin{array}{l}{x_1} = \frac{B}{{\sqrt {{A^2} + {B^2}} }}x - \frac{A}{{\sqrt {{A^2} + {B^2}} }}y = 0\\{y_1} = - \frac{{AC}}{{\sqrt {\left( {{A^2} + {B^2}} \right)\left( {{A^2} + {B^2} + {C^2}} \right)} }}x - \frac{{BC}}{{\sqrt {\left( {{A^2} + {B^2}} \right)\left( {{A^2} + {B^2} + {C^2}} \right)} }}y + \frac{{{A^2} + {B^2}}}{{\sqrt {\left( {{A^2} + {B^2}} \right)\left( {{A^2} + {B^2} + {C^2}} \right)} }}z = 0\end{array} \right.,从而在xyz坐标系中,椭圆中心落在过原点的定直线
L: \left\{ \begin{array}{l}Bx - Ay = 0\\- ACx - BCy + \left( {{A^2} + {B^2}} \right)z = 0\end{array} \right.
上.
(4)设S: x_1^2 + \frac{{{C^2} - {A^2} - {B^2}}}{{{A^2} + {B^2} + {C^2}}}y_1^2 - \frac{{{C^2} - {A^2} - {B^2}}}{{{A^2} + {B^2} + {C^2}}}z_1^2 - \frac{{4C\sqrt {{A^2} + {B^2}} }}{{{A^2} + {B^2} + {C^2}}} - 1 = 0,上一点P\left( {{x_{1,0}},{y_{1,0}},{z_{1,0}}} \right),则曲面S在P点处的切面为
\left( {{x_1} - {x_{1,0}}} \right) \cdot \left( {2{x_{1,0}}} \right) + \left( {{y_1} - {y_{1,0}}} \right) \cdot \left( {2\frac{{{C^2} - {A^2} - {B^2}}}{{{A^2} + {B^2} + {C^2}}}{y_{1,0}}} \right) + \left( {{z_1} - {z_{1,0}}} \right) \cdot \left( { - 2\frac{{{C^2} - {A^2} - {B^2}}}{{{A^2} + {B^2} + {C^2}}}{z_{1,0}}} \right) = 0,记坐标系xyz中,直线L上任一点p在x_1,y_1,z_1中的坐标为p_1(0,0,m),则p_1满足切面方程,即\left( {0 - {x_{1,0}}} \right) \cdot \left( {2{x_{1,0}}} \right) + \left( {0 - {y_{1,0}}} \right) \cdot \left( {2\frac{{{C^2} - {A^2} - {B^2}}}{{{A^2} + {B^2} + {C^2}}}{y_{1,0}}} \right) + \left( {m - {z_{1,0}}} \right) \cdot \left( { - 2\frac{{{C^2} - {A^2} - {B^2}}}{{{A^2} + {B^2} + {C^2}}}{z_{1,0}}} \right) = 0, - 2m\frac{{{C^2} - {A^2} - {B^2}}}{{{A^2} + {B^2} + {C^2}}}{z_{1,0}} - \frac{{8C\sqrt {{A^2} + {B^2}} }}{{{A^2} + {B^2} + {C^2}}} - 2 = 0 \Rightarrow {z_{1,0}} = \frac{{\left( {{A^2} + {B^2} + {C^2}} \right) + 4C\sqrt {{A^2} + {B^2}} }}{{m\left( {{A^2} + {B^2} - {C^2}} \right)}},故此时的P的z_1坐标为定值, 在x_1,y_1,z_1中P形成的轨迹为椭圆,且对应在x,y,z中\Sigma_t\cap S的一个椭圆.
(5)设x_1y_1z_1坐标系中, \Gamma_p: \left\{ \begin{array}{l}{z_1} = \frac{{\left( {{A^2} + {B^2} + {C^2}} \right) + 4C\sqrt {{A^2} + {B^2}} }}{{m\left( {{A^2} + {B^2} - {C^2}} \right)}}\\x_1^2 + \frac{{{C^2} - {A^2} - {B^2}}}{{{A^2} + {B^2} + {C^2}}}y_1^2 - \frac{{{C^2} - {A^2} - {B^2}}}{{{A^2} + {B^2} + {C^2}}}z_1^2 - \frac{{4C\sqrt {{A^2} + {B^2}} }}{{{A^2} + {B^2} + {C^2}}} - 1 = 0\end{array} \right.所在平面落在S外部的一点\hat p_1的坐标为\left( {{x_{1,1}},{y_{1,1}},{z_{1,1}}} \right), \hat p_1满足(4)中P点处的切面方程,即\left( {{x_{1,1}} - {x_{1,0}}} \right) \cdot \left( {2{x_{1,0}}} \right) + \left( {{y_{1,1}} - {y_{1,0}}} \right) \cdot \left( {2\frac{{{C^2} - {A^2} - {B^2}}}{{{A^2} + {B^2} + {C^2}}}{y_{1,0}}} \right) + \left( {{z_{1,1}} - {z_{1,0}}} \right) \cdot \left( { - 2\frac{{{C^2} - {A^2} - {B^2}}}{{{A^2} + {B^2} + {C^2}}}{z_{1,0}}} \right) = 0,
则有
2{x_{1,1}}{x_{1,0}} + 2\frac{{{C^2} - {A^2} - {B^2}}}{{{A^2} + {B^2} + {C^2}}}{y_{1,1}}{y_{1,0}} - \frac{{8C\sqrt {{A^2} + {B^2}} }}{{{A^2} + {B^2} + {C^2}}} - 2 + \frac{{2\left( {{A^2} + {B^2} + {C^2}} \right) + 8C\sqrt {{A^2} + {B^2}} }}{{m\left( {{A^2} + {B^2} - {C^2}} \right)}}{z_{1,0}} = 0.显然其经过p_1.进一步地,经过与之前类似的坐标轴旋转,我们知道P的轨迹落在一条双曲线上.
PS:这份试卷是考完后的第一天根据好友同学提供的资料进行整理的,感谢他们的辛劳,同时也祝贺他们在昨天下午清华的初试中获得成功。