Processing math: 2%
北京大学数学科学学院2015年直博生摸底考试试题解答 - Eufisky - The lost book
一个很好的积分题
多重积分计算的一些题

北京大学数学科学学院2015年直博生摸底考试试题解答

Eufisky posted @ 2015年8月27日 00:28 in 数学分析 with tags 考研 , 1019 阅读

这份试题本来已经写好答案了,但因为电脑的事,里面文件都没了。下面重新给出解答:


1.(90分) 设y=f(x)R上的C函数,对任意整数k0,记Mk=sup.设mn为两整数, 0\leq m<n,试分别就下列情况,给出你的结论和证明.
(1)如果M_mM_n均有界,那么对哪些整数k, M_k有界?对哪些整数k, M_k可以无界?
(2)如果\lim_{x\to+\infty}|f^{(m)}(x)|存在有限极限,而M_n有界,则对哪些自然数k,极限\lim_{x\to+\infty}|f^{(k)}(x)|也存在极限?
(3)如果\lim_{x\to+\infty}|f^{(m)}(x)|\lim_{x\to+\infty}|f^{(n)}(x)|都存在有限极限,则对哪些自然数k,极限\lim_{x\to+\infty}|f^{(k)}(x)|也存在极限?
 

2.(30分) 判断级数\sum\nolimits_{n = 2}^{ + \infty } {\frac{{{{\left( { - 1} \right)}^n}}}{{\sqrt n  + {{\left( { - 1} \right)}^{\left[ {\sqrt n } \right]}}}}}的敛散性,其中[x]表示x的取整.

enlightened证:\begin{align*}\sum\limits_{n = 2}^{ + \infty } {\frac{{{{\left( { - 1} \right)}^n}}}{{\sqrt n  + {{\left( { - 1} \right)}^{\left[ {\sqrt n } \right]}}}}}  &= \sum\limits_{n = 2}^{ + \infty } {\frac{{{{\left( { - 1} \right)}^n}\left( {\sqrt n  - {{\left( { - 1} \right)}^{\left[ {\sqrt n } \right]}}} \right)}}{{n - 1}}} \\&= \sum\limits_{n = 2}^{ + \infty } {\frac{{{{\left( { - 1} \right)}^n}\sqrt n }}{{n - 1}}}  - \sum\limits_{n = 2}^{ + \infty } {\frac{{{{\left( { - 1} \right)}^{n + \left[ {\sqrt n } \right]}}}}{{n - 1}}}.\end{align*}

由Leibniz判别法知,级数\sum\limits_{n = 2}^{ + \infty } {\frac{{{{\left( { - 1} \right)}^n}\sqrt n }}{{n - 1}}}  = \sum\limits_{n = 2}^{ + \infty } {\frac{{{{\left( { - 1} \right)}^n}}}{{\sqrt n  - \frac{1}{{\sqrt n }}}}} 收敛.
k \le \sqrt n  < k + 1,即{k^2} \le n < {\left( {k + 1} \right)^2}时, {\left[ {\sqrt n } \right]}=k,则
\begin{align*}&\sum\limits_{n = 2}^{ + \infty } {\frac{{{{\left( { - 1} \right)}^{n + \left[ {\sqrt n } \right]}}}}{{n - 1}}}  =  - \frac{1}{2} + \sum\limits_{k = 2}^{ + \infty } {\sum\limits_{n = {k^2}}^{{k^2} + 2k} {\frac{{{{\left( { - 1} \right)}^{n + k}}}}{{n - 1}}} }  =  - \frac{1}{2} + \sum\limits_{k = 2}^{ + \infty } {{{\left( { - 1} \right)}^k}\sum\limits_{n = {k^2}}^{{k^2} + 2k} {\frac{{{{\left( { - 1} \right)}^n}}}{{n - 1}}} } \\&=  - \frac{1}{2} + \sum\limits_{k = 2}^{ + \infty } {{{\left( { - 1} \right)}^k}\sum\limits_{n = {k^2}}^{{k^2} + 2k} {{{\left( { - 1} \right)}^{{k^2}}}\left[ {\left( {\frac{1}{{{k^2} - 1}} + \frac{1}{{{k^2} + 1}} +  \cdots  + \frac{1}{{{k^2} + 2k - 1}}} \right)} \right.} } \\&\left. { - \left( {\frac{1}{{{k^2}}} + \frac{1}{{{k^2} + 2}} +  \cdots  + \frac{1}{{{k^2} + 2k - 2}}} \right)} \right] =  - \frac{1}{2} + \sum\limits_{k = 2}^{ + \infty } {\left[ {\left( {\frac{1}{{{k^2} - 1}} + \frac{1}{{{k^2} + 1}} +  \cdots  + \frac{1}{{{k^2} + 2k - 1}}} \right)} \right.} \\&\left. { - \left( {\frac{1}{{{k^2}}} + \frac{1}{{{k^2} + 2}} +  \cdots  + \frac{1}{{{k^2} + 2k - 2}}} \right)} \right] \le  - \frac{1}{2} + \sum\limits_{k = 2}^{ + \infty } {\left[ {\left( {\frac{{k + 1}}{{{k^2} - 1}} - \frac{k}{{{k^2} + 2k - 2}}} \right)} \right.} \\&\le  - \frac{1}{2} + \sum\limits_{k = 2}^{ + \infty } {\left[ {\left( {\frac{1}{{k - 1}} - \frac{1}{{k + 2}}} \right)} \right.}  =  - \frac{1}{2} + 1 + \frac{1}{2} + \frac{1}{3} = \frac{4}{3}\end{align*}
\begin{align*}{a_n} &= \left( {\frac{1}{{{k^2} - 1}} + \frac{1}{{{k^2} + 1}} +  \cdots  + \frac{1}{{{k^2} + 2k - 1}}} \right) - \left( {\frac{1}{{{k^2}}} + \frac{1}{{{k^2} + 2}} +  \cdots  + \frac{1}{{{k^2} + 2k - 2}}} \right)\\&= \left( {\frac{1}{{{k^2} - 1}} - \frac{1}{{{k^2}}}} \right) + \left( {\frac{1}{{{k^2} + 1}} - \frac{1}{{{k^2} + 2}}} \right) +  \cdots  + \left( {\frac{1}{{{k^2} + 2k - 3}} - \frac{1}{{{k^2} + 2k - 2}}} \right) + \frac{1}{{{k^2} + 2k - 1}}\\&\ge \frac{1}{{{k^2} + 2k - 1}} > 0.\end{align*}
\sum\limits_{n = 2}^{ + \infty } {\frac{{{{\left( { - 1} \right)}^{n + \left[ {\sqrt n } \right]}}}}{{n - 1}}} 收敛,从而数列\sum\nolimits_{n = 2}^{ + \infty } {\frac{{{{\left( { - 1} \right)}^n}}}{{\sqrt n  + {{\left( { - 1} \right)}^{\left[ {\sqrt n } \right]}}}}}亦收敛.laugh

3.(30分) 证明\int_0^1 {\int_0^1 {\frac{1}{{{{\left( {xy} \right)}^{xy}}}}dxdy} }  = \int_0^1 {\frac{1}{{{x^x}}}dx}  = \sum\limits_{n = 1}^{ + \infty } {\frac{1}{{{n^n}}}} .

enlightened证:令u = xy,v = x,则x=v,y=\frac uv.由0\leq x,y\leq 1可知0\leq u\leq v,0\leq v\leq 1,

\begin{align*}\left| {\frac{{\partial \left( {x,y} \right)}}{{\partial \left( {u,v} \right)}}} \right| = \left| {\begin{array}{*{20}{c}}0&1\\{\frac{1}{v}}&{ - \frac{u}{{{v^2}}}}\end{array}} \right| = - \frac{1}{v}\,,\end{align*}
那么有
\begin{align*}&\int_0^1 {\int_0^1 {\frac{1}{{{{\left( {xy} \right)}^{xy}}}}dxdy} } = \int_0^1 {dv} \int_0^v {\frac{1}{{{u^u}v}}du} \\&= \int_0^1 {du} \int_u^1 {\frac{1}{{{u^u}v}}dv} = \int_0^1 {\frac{{ - \ln u}}{{{u^u}}}du} \\&= \int_0^1 {\frac{{ - \ln u - 1}}{{{u^u}}}du} + \int_0^1 {\frac{1}{{{u^u}}}du} \\&= \left[ {\frac{1}{{{u^u}}}} \right]_0^1 + \int_0^1 {\frac{1}{{{u^u}}}du} = \int_0^1 {\frac{1}{{{x^x}}}dx}.\end{align*}
\begin{align*}&\int_0^1 {\frac{1}{{{x^x}}}dx} = \int_0^1 {{e^{ - x\ln x}}dx} = \int_0^1 {{e^{ - x\ln x}}dx} \\&= \int_0^1 {\sum\limits_{n = 0}^{+\infty} {\frac{{{{\left( { - x\ln x} \right)}^n}}}{{n!}}} dx} = \sum\limits_{n = 0}^{+\infty} {\frac{1}{{n!}}\int_0^1 {{{\left( { - x\ln x} \right)}^n}dx} }.\end{align*}
t=-(n+1)\ln x,有
\begin{align*}\int_0^1 {{{\left( { - x\ln x} \right)}^n}dx} &= \frac{1}{{{{\left( {n + 1} \right)}^{n + 1}}}}\int_0^{ + +\infty } {{t^n}{e^{ - t}}dt} \\&= \frac{{\Gamma \left( {n + 1} \right)}}{{{{\left( {n + 1} \right)}^{n + 1}}}} = \frac{{n!}}{{{{\left( {n + 1} \right)}^{n + 1}}}}.\end{align*}
因此有
\begin{align*}\int_0^1 {\frac{1}{{{x^x}}}dx} = \sum\limits_{n = 0}^{ + \infty } {\frac{1}{{n!}}\int_0^1 {{{\left( { - x\ln x} \right)}^n}dx} } = \sum\limits_{n = 0}^{ + \infty } {\frac{1}{{{{\left( {n + 1} \right)}^{n + 1}}}}} =\sum\limits_{n = 1}^{ + \infty } {\frac{1}{{{n^n}}}} .\end{align*}laugh

4.(25分) 设A是一个n阶方阵,且n\geq3.A^\astA的伴随矩阵(即A的代数余子式所组成的矩阵).试证明,若{(A^\ast)}^\ast\neq O (零矩阵),则A可逆,且此时{(A^\ast)}^\astA的一个纯量倍.

enlightened证:由于A可逆时,A^\ast必可逆,从而{(A^\ast)}^\ast亦可逆;当A不可逆时,A^\ast的秩不大于1,从而{(A^\ast)}^\ast必为零矩阵.

 

由此可知,当{(A^\ast)}^\ast\neq O 时,A可逆.再由A{A^ * } = \left| A \right|{I_n} \Rightarrow \left| {{A^ * }} \right| = {\left| A \right|^{n - 1}},{\left( {{A^ * }} \right)^{ - 1}} = \frac{1}{{\left| A \right|}}A{A^ * }{\left( {{A^ * }} \right)^*} = \left| {{A^ * }} \right|{I_n}可知

{\left( {{A^ * }} \right)^*} = \left| {{A^ * }} \right|{\left( {{A^ * }} \right)^{ - 1}} = {\left| A \right|^{n - 1}} \cdot \frac{1}{{\left| A \right|}}A = {\left| A \right|^{n - 2}}A.由于{\left| A \right|^{n - 2}}是个定值,我们得知{(A^\ast)}^\astA的一个纯量倍.laugh


5.(25分) 设A是一个3阶实方阵,考虑A所定义的线性变换\mathbb{R}^3\to\mathbb{R}^3,\alpha\to A\alpha ( \alpha是列向量).试证明:若AA'=A'A (其中A'是指A的转置矩阵),则上述线性变换必有一个2维不变子空间.

 


6.(25分) 设AB是复数域\mathbb{C}上的两个n阶方阵,并且An个特征值1,2,\cdots,n, B也有n个特征值\sqrt{p_1},\cdots,\sqrt{p_n},其中p_1,\cdots,p_n是前n个素数(比如p_1=2,p_2=3等).试证明: M_n(\mathbb{C})上的线性变换X\to AXB是可以对角化的.

 

7.(25分) 设A = \left( {\begin{array}{*{20}{c}}{ - 2}&1&3\\{ - 2}&1&2\\{ - 1}&1&2\end{array}} \right),

试找出两个没有常数项的多项式f(x)\varphi(x),使得下列三个条件同时成立:
1). f(A)可对角化.    2). \varphi (A)是幂零矩阵.    3). A=f(A)+\varphi (A).
enlightened解:f\left( \lambda \right) = \left| {\lambda {I_n} - A} \right| = \left( {\lambda + 1} \right){\left( {\lambda - 1} \right)^2}.

由Cayley---Hamilton定理可知,f\left( A \right) = \left( {A + 1} \right){\left( {A - 1} \right)^2} = {A^3} - {A^2} - A + {I_n} = 0.

我们有

A = {A^3} + \left( {{A^2} - {A^4}} \right).f\left( x \right) = {x^3},\varphi \left( x \right) = {x^2} - {x^4}即可.laugh


8.几何部分共5道小题,每小题10分。

(1)三维欧氏空间中取定直角坐标系。有一直线l过点(1,0,0)且方向向量为(0,1,1)lz轴旋转生成一个二次曲面S。试写出此二次曲面的代数方程(形如f(x,y,z)=0).
(2)设有一固定平面\Sigma,具有以下性质:上述直线l在绕z轴旋转过程中总是与\Sigma相交。考虑与\Sigma平行的平面族\Sigma_t,t\in\mathbb{R},\Sigma_0=\Sigma。试证明\Sigma_t\cap S总是椭圆.
(3)试证明t值变化过程中,上述各椭圆的中心总落在一条过原点的空间定直线L上.
(4)固定L上任一点p,试证明:由p向曲面S作的各条切线的切点都落在一条椭圆\Gamma_p上,且椭圆\Gamma_p所在平面是\Sigma_t之一.
(5)S把它在空间的补集分成内外两个连通分支,其中外部区域不包含原点。取上一小题所述椭圆\Gamma所在平面落在S外部的一点\hat p。试证明:从\hat pS所作的各条切线之切点落在一条双曲线\hat \Gamma上,且\hat \Gamma所在平面过p点.
enlightened证:(1)记A(1,0,0),设直线上有一点B(x,y,z),则\overrightarrow {AB} = \left( {x - 1,y,z} \right)=t(0,1,1),则B(1,t,t).对于给定z=t,其绕z轴旋转形成的图形为{x^2} + {y^2} = {t^2} + 1 = {z^2} + 1,故该二次曲面方程为{x^2} + {y^2} - {z^2} - 1 = 0.

(2)设固定平面\Sigma的方程为Ax+By+Cz-a_t=0

 

  • A^2+B^2=0A=B=0时,方程退化成

z = \frac{{{a_t}}}{C},\left\{ \begin{array}{l}{x^2} + {y^2} - {z^2} = 1\\z = \frac{{{a_t}}}{C}\end{array} \right. \Rightarrow \frac{{{x^2}}}{{\frac{{a_t^2}}{{{C^2}}} + 1}} + \frac{{{y^2}}}{{\frac{{a_t^2}}{{{C^2}}} + 1}} = 1,

可知此时\Sigma_t\cap S为圆,当然可以看成是椭圆.

  • A^2+B^2\neq0时,作坐标系旋转

\left\{ \begin{array}{l}{x_1} = \frac{B}{{\sqrt {{A^2} + {B^2}} }}x - \frac{A}{{\sqrt {{A^2} + {B^2}} }}y\\{y_1} = - \frac{{AC}}{{\sqrt {\left( {{A^2} + {B^2}} \right)\left( {{A^2} + {B^2} + {C^2}} \right)} }}x - \frac{{BC}}{{\sqrt {\left( {{A^2} + {B^2}} \right)\left( {{A^2} + {B^2} + {C^2}} \right)} }}y + \frac{{{A^2} + {B^2}}}{{\sqrt {\left( {{A^2} + {B^2}} \right)\left( {{A^2} + {B^2} + {C^2}} \right)} }}z\\{z_1} = \frac{A}{{\sqrt {{A^2} + {B^2} + {C^2}} }}x + \frac{B}{{\sqrt {{A^2} + {B^2} + {C^2}} }}y + \frac{C}{{\sqrt {{A^2} + {B^2} + {C^2}} }}z\end{array} \right.

\left\{ \begin{array}{l}x = \frac{B}{{\sqrt {{A^2} + {B^2}} }}{x_1} - \frac{{AC}}{{\sqrt {\left( {{A^2} + {B^2}} \right)\left( {{A^2} + {B^2} + {C^2}} \right)} }}{y_1} + \frac{A}{{\sqrt {{A^2} + {B^2} + {C^2}} }}{z_1}\\y = - \frac{A}{{\sqrt {{A^2} + {B^2}} }}{x_1} - \frac{{BC}}{{\sqrt {\left( {{A^2} + {B^2}} \right)\left( {{A^2} + {B^2} + {C^2}} \right)} }}{y_1} + \frac{B}{{\sqrt {{A^2} + {B^2} + {C^2}} }}{z_1}\\z = \frac{{\sqrt {{A^2} + {B^2}} }}{{\sqrt {{A^2} + {B^2} + {C^2}} }}{y_1} + \frac{C}{{\sqrt {{A^2} + {B^2} + {C^2}} }}{z_1}\end{array} \right.,

该平面方程化为{z_1} = \frac{{{a_t}}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}, S化为

x_1^2 + \frac{{{C^2} - {A^2} - {B^2}}}{{{A^2} + {B^2} + {C^2}}}y_1^2 - \frac{{{C^2} - {A^2} - {B^2}}}{{{A^2} + {B^2} + {C^2}}}z_1^2 - \frac{{4C\sqrt {{A^2} + {B^2}} }}{{{A^2} + {B^2} + {C^2}}} - 1 = 0,

则截面方程为

x_1^2 + \frac{{{C^2} - {A^2} - {B^2}}}{{{A^2} + {B^2} + {C^2}}}y_1^2 - \frac{{{C^2} - {A^2} - {B^2}}}{{{{\left( {{A^2} + {B^2} + {C^2}} \right)}^2}}}a_t^2 - \frac{{4C\sqrt {{A^2} + {B^2}} }}{{{A^2} + {B^2} + {C^2}}} - 1 = 0.显然\Sigma_t\cap S为椭圆.

 

综上可知, \Sigma_t\cap S总是椭圆.

(3)由(2)可知,在x_1y_1z_1坐标系中,椭圆的中心为

\left( {0,0,\frac{{{a_t}}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}} \right),即中心在z_1轴上,\left\{ \begin{array}{l}{x_1} = \frac{B}{{\sqrt {{A^2} + {B^2}} }}x - \frac{A}{{\sqrt {{A^2} + {B^2}} }}y = 0\\{y_1} = - \frac{{AC}}{{\sqrt {\left( {{A^2} + {B^2}} \right)\left( {{A^2} + {B^2} + {C^2}} \right)} }}x - \frac{{BC}}{{\sqrt {\left( {{A^2} + {B^2}} \right)\left( {{A^2} + {B^2} + {C^2}} \right)} }}y + \frac{{{A^2} + {B^2}}}{{\sqrt {\left( {{A^2} + {B^2}} \right)\left( {{A^2} + {B^2} + {C^2}} \right)} }}z = 0\end{array} \right.,从而在xyz坐标系中,椭圆中心落在过原点的定直线

L: \left\{ \begin{array}{l}Bx - Ay = 0\\- ACx - BCy + \left( {{A^2} + {B^2}} \right)z = 0\end{array} \right.

上.

(4)设S: x_1^2 + \frac{{{C^2} - {A^2} - {B^2}}}{{{A^2} + {B^2} + {C^2}}}y_1^2 - \frac{{{C^2} - {A^2} - {B^2}}}{{{A^2} + {B^2} + {C^2}}}z_1^2 - \frac{{4C\sqrt {{A^2} + {B^2}} }}{{{A^2} + {B^2} + {C^2}}} - 1 = 0,上一点P\left( {{x_{1,0}},{y_{1,0}},{z_{1,0}}} \right),则曲面SP点处的切面为

\left( {{x_1} - {x_{1,0}}} \right) \cdot \left( {2{x_{1,0}}} \right) + \left( {{y_1} - {y_{1,0}}} \right) \cdot \left( {2\frac{{{C^2} - {A^2} - {B^2}}}{{{A^2} + {B^2} + {C^2}}}{y_{1,0}}} \right) + \left( {{z_1} - {z_{1,0}}} \right) \cdot \left( { - 2\frac{{{C^2} - {A^2} - {B^2}}}{{{A^2} + {B^2} + {C^2}}}{z_{1,0}}} \right) = 0,记坐标系xyz中,直线L上任一点px_1,y_1,z_1中的坐标为p_1(0,0,m),则p_1满足切面方程,即\left( {0 - {x_{1,0}}} \right) \cdot \left( {2{x_{1,0}}} \right) + \left( {0 - {y_{1,0}}} \right) \cdot \left( {2\frac{{{C^2} - {A^2} - {B^2}}}{{{A^2} + {B^2} + {C^2}}}{y_{1,0}}} \right) + \left( {m - {z_{1,0}}} \right) \cdot \left( { - 2\frac{{{C^2} - {A^2} - {B^2}}}{{{A^2} + {B^2} + {C^2}}}{z_{1,0}}} \right) = 0, - 2m\frac{{{C^2} - {A^2} - {B^2}}}{{{A^2} + {B^2} + {C^2}}}{z_{1,0}} - \frac{{8C\sqrt {{A^2} + {B^2}} }}{{{A^2} + {B^2} + {C^2}}} - 2 = 0 \Rightarrow {z_{1,0}} = \frac{{\left( {{A^2} + {B^2} + {C^2}} \right) + 4C\sqrt {{A^2} + {B^2}} }}{{m\left( {{A^2} + {B^2} - {C^2}} \right)}},故此时的Pz_1坐标为定值, 在x_1,y_1,z_1P形成的轨迹为椭圆,且对应在x,y,z\Sigma_t\cap S的一个椭圆.

(5)设x_1y_1z_1坐标系中, \Gamma_p: \left\{ \begin{array}{l}{z_1} = \frac{{\left( {{A^2} + {B^2} + {C^2}} \right) + 4C\sqrt {{A^2} + {B^2}} }}{{m\left( {{A^2} + {B^2} - {C^2}} \right)}}\\x_1^2 + \frac{{{C^2} - {A^2} - {B^2}}}{{{A^2} + {B^2} + {C^2}}}y_1^2 - \frac{{{C^2} - {A^2} - {B^2}}}{{{A^2} + {B^2} + {C^2}}}z_1^2 - \frac{{4C\sqrt {{A^2} + {B^2}} }}{{{A^2} + {B^2} + {C^2}}} - 1 = 0\end{array} \right.所在平面落在S外部的一点\hat p_1的坐标为\left( {{x_{1,1}},{y_{1,1}},{z_{1,1}}} \right), \hat p_1满足(4)中P点处的切面方程,即\left( {{x_{1,1}} - {x_{1,0}}} \right) \cdot \left( {2{x_{1,0}}} \right) + \left( {{y_{1,1}} - {y_{1,0}}} \right) \cdot \left( {2\frac{{{C^2} - {A^2} - {B^2}}}{{{A^2} + {B^2} + {C^2}}}{y_{1,0}}} \right) + \left( {{z_{1,1}} - {z_{1,0}}} \right) \cdot \left( { - 2\frac{{{C^2} - {A^2} - {B^2}}}{{{A^2} + {B^2} + {C^2}}}{z_{1,0}}} \right) = 0,

 

则有

2{x_{1,1}}{x_{1,0}} + 2\frac{{{C^2} - {A^2} - {B^2}}}{{{A^2} + {B^2} + {C^2}}}{y_{1,1}}{y_{1,0}} - \frac{{8C\sqrt {{A^2} + {B^2}} }}{{{A^2} + {B^2} + {C^2}}} - 2 + \frac{{2\left( {{A^2} + {B^2} + {C^2}} \right) + 8C\sqrt {{A^2} + {B^2}} }}{{m\left( {{A^2} + {B^2} - {C^2}} \right)}}{z_{1,0}} = 0.显然其经过p_1.进一步地,经过与之前类似的坐标轴旋转,我们知道P的轨迹落在一条双曲线上.


PS:这份试卷是考完后的第一天根据好友同学提供的资料进行整理的,感谢他们的辛劳,同时也祝贺他们在昨天下午清华的初试中获得成功。

 


登录 *


loading captcha image...
(输入验证码)
or Ctrl+Enter