哆嗒数学网里代数龙发的一系列级数题
练习题1.证明:$$\sum\limits_{n=1}^{\infty}\frac{1}{(n+1)\sqrt[p]{n}}\leq p,\,\,(p\ge1).$$
证:由Lagrange中值定理,我们有
\[\sqrt[p]{{n + 1}} - \sqrt[p]{n} = \frac{1}{p}{\xi ^{1/p - 1}} \ge \frac{1}{p}{\left( {n + 1} \right)^{1/p - 1}},\quad \xi \in \left( {n,n + 1} \right).\]
因此\[\frac{1}{{\left( {n + 1} \right)\sqrt[p]{n}}} = \frac{{\sqrt[p]{{n + 1}} - \sqrt[p]{n}}}{{\sqrt[p]{n} \cdot \sqrt[p]{{n + 1}}}} \cdot \frac{{{{\left( {n + 1} \right)}^{1/p - 1}}}}{{\sqrt[p]{{n + 1}} - \sqrt[p]{n}}} \le p\frac{{\sqrt[p]{{n + 1}} - \sqrt[p]{n}}}{{\sqrt[p]{n} \cdot \sqrt[p]{{n + 1}}}} = p\left( {\frac{1}{{\sqrt[p]{n}}} - \frac{1}{{\sqrt[p]{{n + 1}}}}} \right).\]
立即有
\[\sum\limits_{n = 1}^\infty {\frac{1}{{\left( {n + 1} \right)\sqrt[p]{n}}}} \le p\sum\limits_{n = 1}^\infty {\left( {\frac{1}{{\sqrt[p]{n}}} - \frac{1}{{\sqrt[p]{{n + 1}}}}} \right)} = p.\]
练习题2.设$\displaystyle S_n=\sum\limits_{k=1}^{n}a_k, p>1,c>1$,证明:$$\sum\limits_{n=1}^{\infty}\frac{S_n^p}{n^c}\le K\sum\limits_{n=1}^{\infty}\frac{(na_n)^p}{n^c},$$并求出$K$的最优值.
练习题3.设$a_n$是有界的正数列,$p>0$,证明:
练习题4.设$(0,+\infty)$上的函数列$f_n$由下式定义:$$f_1(x)=x,f_{n+1}(x)=(f_n(x)+\frac{1}{n})f_n(x).$$证明:存在唯一的正数$a$,使得对于所有$n$,$$0<f_n(x)<f_{n+1}(a)<1.$$
练习题5.$\displaystyle\sum\limits_{n=1}^{\infty}a_n$为正项收敛级数,$\displaystyle r_n=\sum\limits_{k=n}^{\infty}a_k,0<p<1$,证明:$$\sum\limits_{n=1}^{\infty}\frac{a_n}{r_n^p}<\frac{1}{1-p}\left(\sum\limits_{n=1}^{\infty}a_n \right)^{1-p}.$$
练习题6.设$a>0,a_n$是一个数列,并且$a_n>0,a_{n+1}\ge a_n$,证明:$$\sum\limits_{n=1}^{\infty}\frac{a_n-a_{n-1}}{a_na_{n-1}^a}$$收敛.
证:首先可以确定给定的级数是正项级数.
(1)当$0<a<1$时,我们利用Lagrange中值定理,有\[\frac{{a_n^a - a_{n - 1}^a}}{{{a_n} - {a_{n - 1}}}} = a{\xi ^{a - 1}} \ge aa_n^{a - 1},\quad \xi \in \left( {{a_{n - 1}},{a_n}} \right).\]
因此\[\frac{{{a_n} - {a_{n - 1}}}}{{{a_n}a_{n - 1}^a}} = \frac{{a_n^a - a_{n - 1}^a}}{{a_n^aa_{n - 1}^a}} \cdot \left( {\frac{{{a_n} - {a_{n - 1}}}}{{a_n^a - a_{n - 1}^a}} \cdot a_n^{a - 1}} \right) \le \frac{1}{a}\frac{{a_n^a - a_{n - 1}^a}}{{a_n^aa_{n - 1}^a}} = \frac{1}{a}\left( {\frac{1}{{a_{n - 1}^a}} - \frac{1}{{a_n^a}}} \right).\]
故\[\sum\limits_{n = 1}^\infty {\frac{{{a_n} - {a_{n - 1}}}}{{{a_n}a_{n - 1}^a}}} \le \frac{1}{a}\sum\limits_{n = 1}^\infty {\left( {\frac{1}{{a_{n - 1}^a}} - \frac{1}{{a_n^a}}} \right)} = \frac{1}{a}\left( {\frac{1}{{a_0^a}} - \mathop {\lim }\limits_{n \to \infty } \frac{1}{{a_n^a}}} \right).\]
由于$\{a_n\}$是单增的正数列,则${\mathop {\lim }\limits_{n \to \infty } \frac{1}{{a_n^a}}}$必定存在,由此可知原正项级数收敛;
(2)当$a\geq1$时,由\[\sum\limits_{n = 1}^\infty {\frac{{{a_n} - {a_{n - 1}}}}{{{a_n}a_{n - 1}^a}}} = \sum\limits_{n = 1}^\infty {\left( {\frac{1}{{a_{n - 1}^a}} - \frac{{a_{n - 1}^{1 - a}}}{{{a_n}}}} \right)} \le \sum\limits_{n = 1}^\infty {\left( {\frac{1}{{a_{n - 1}^a}} - \frac{1}{{a_n^a}}} \right)} = \frac{1}{a}\left( {\frac{1}{{a_0^a}} - \mathop {\lim }\limits_{n \to \infty } \frac{1}{{a_n^a}}} \right)\]同样可知原正项级数收敛.
综上,级数$\sum\limits_{n=1}^{\infty}\frac{a_n-a_{n-1}}{a_na_{n-1}^a}$收敛.
练习题7.设$\displaystyle S(x)=\sum\limits_{n=1}^{\infty}\frac{2n}{(n^2 +x^2)^2}$,证明:$$\frac{1}{x^2 +\frac{1}{2\zeta(3)}}<S(x)<\frac{1}{x^2 +\frac{1}{6}},$$其中$\displaystyle \zeta(3)=\sum\limits_{n=1}^{\infty}\frac{1}{n^3}.$
练习题8.给定序列$\{a_n\}$,且$a_n$满足$a_1=2,a_2=8,a_n=4a_{n-1}-a_{n-2}(n=3,4,\ldots)$,证明:$$\sum\limits_{n=1}^{\infty}\text{arccot}\,\,a_n^2=\frac{\pi}{12}.$$
证.由${a_n} + {a_{n - 2}} = 4{a_{n - 1}}$可知\[{a_n}\left( {{a_n} + {a_{n - 2}}} \right) = 4{a_{n - 1}}{a_n} = {a_{n - 1}}\left( {{a_{n + 1}} + {a_{n - 1}}} \right),\]递推得\[a_n^2 - {a_{n + 1}}{a_{n - 1}} = a_{n - 1}^2 - {a_n}{a_{n - 2}} = \cdots = a_2^2 - {a_3}{a_1} = 4.\]
注意到$\mathrm{arccot\,} x$的一个公式
\[\mathrm{arccot\,} x-\mathrm{arccot\,} y=\mathrm{arccot\,}\left( \frac{1+xy}{y-x}\right).\]
因此有
\begin{align*}\mathrm{arccot\,} a_n^2 &= \mathrm{arccot\,} \frac{{{a_n} \cdot 4{a_n}}}{4} = \mathrm{arccot\,} \frac{{{a_n}\left( {{a_{n + 1}} + {a_{n - 1}}} \right)}}{4} =\mathrm{arccot\,} \frac{{{a_n}\left( {{a_{n + 1}} + {a_{n - 1}}} \right)}}{{a_n^2 - {a_{n + 1}}{a_{n - 1}}}}\\& = \mathrm{arccot\,} \frac{{1 + \frac{{{a_{n + 1}}}}{{{a_{n - 1}}}}}}{{\frac{{{a_n}}}{{{a_{n - 1}}}} - \frac{{{a_{n + 1}}}}{{{a_n}}}}} = \mathrm{arccot\,} \frac{{{a_{n + 1}}}}{{{a_n}}} -\mathrm{arccot\,} \frac{{{a_n}}}{{{a_{n - 1}}}}.\end{align*}
易得\[\mathop {\lim }\limits_{n \to \infty } \frac{{{a_{n + 1}}}}{{{a_n}}} = 2 + \sqrt 3 .\]
故
\[\sum\limits_{n = 1}^\infty {\mathrm{arccot\,} a_n^2} = \mathrm{arccot\,} a_1^2 + \sum\limits_{n = 2}^\infty {\mathrm{arccot\,} a_n^2} = \mathop {\lim }\limits_{n \to \infty } \mathrm{arccot\,} \frac{{{a_{n + 1}}}}{{{a_n}}} - \mathrm{arccot\,} \frac{{{a_2}}}{{{a_1}}} + \mathrm{arccot\,} a_1^2 = \frac{\pi }{{12}}.\]
练习题9.设$\displaystyle a_n=\arctan \frac{1}{n^2 +n +1}$,证明: $$\sum\limits_{k=1}^{\infty}\frac{a_k^{1/2}}{k^2} \le \sqrt{\frac{\pi}{3}}.$$
证.注意到
\begin{align*}\sum\limits_{k = 1}^\infty {{a_k}} &= \sum\limits_{k = 1}^\infty {\arctan \frac{1}{{{k^2} + k + 1}}} = \sum\limits_{k = 1}^\infty {\left( {\arctan \frac{1}{k} - \arctan \frac{1}{{k + 1}}} \right)} = \frac{\pi }{4}\\\sum\limits_{k = 1}^\infty {\frac{1}{{{k^4}}}} &= \zeta \left( 4 \right) = \frac{{{\pi ^4}}}{{90}}.\end{align*}
由Cauchy-Schwarz不等式可知
\[\sum\limits_{k = 1}^N {\frac{1}{{{k^4}}}} \cdot \sum\limits_{k = 1}^N {{a_k}} \ge {\left( {\sum\limits_{k = 1}^N {\frac{{a_k^{1/2}}}{{{k^2}}}} } \right)^2}.\]
令$N\to\infty$,我们有\[\sum\limits_{k = 1}^\infty {\frac{{a_k^{1/2}}}{{{k^2}}}} \le \sqrt {\frac{{{\pi ^4}}}{{90}} \cdot \frac{\pi }{4}} = \sqrt {\frac{{{\pi ^5}}}{{360}}} < \sqrt {\frac{\pi }{3}} .\]
也可通过放缩实现\[\sum\limits_{k = 1}^\infty {\frac{1}{{{k^4}}}} = 1 + \sum\limits_{k = 2}^\infty {\frac{1}{{{k^4}}}} < 1 + \sum\limits_{k = 2}^\infty {\frac{1}{{\left( {k + 1} \right)\left( {k + 2} \right)}}} = \frac{4}{3}.\]
练习题10.设$\displaystyle a_n > 0, S_n=\sum\limits_{k=1}^na_k$,证明:
证.(1)由柯西不等式我们得
\[\sum\limits_{m = 1}^n {\frac{{{m^2}}}{{{a_m}}}} \sum\limits_{m = 1}^n {{a_m}} \ge {\left( {1 + 2 + \cdots + n} \right)^2} = \frac{1}{4}{n^2}{\left( {n + 1} \right)^2},\]
即\[\frac{n}{{{a_1} + {a_2} + \cdots + {a_n}}} \le \frac{4}{{n{{\left( {n + 1} \right)}^2}}}\sum\limits_{m = 1}^n {\frac{{{m^2}}}{{{a_m}}}} .\]
因此
\begin{align*}\sum\limits_{n = 1}^\infty {\frac{n}{{{a_1} + {a_2} + \cdots + {a_n}}}} &\le 4\sum\limits_{n = 1}^\infty {\frac{1}{{n{{\left( {n + 1} \right)}^2}}}\sum\limits_{m = 1}^n {\frac{{{m^2}}}{{{a_m}}}} } = 4\sum\limits_{m = 1}^\infty {\frac{{{m^2}}}{{{a_m}}}\sum\limits_{n = m}^\infty {\frac{1}{{n{{\left( {n + 1} \right)}^2}}}} } \\&\le 4\sum\limits_{m = 1}^\infty {\frac{{{m^2}}}{{{a_m}}}\sum\limits_{n = m}^\infty {\frac{1}{2}\left[ {\frac{1}{{{n^2}}} - \frac{1}{{{{\left( {n + 1} \right)}^2}}}} \right]} } = 2\sum\limits_{m = 1}^\infty {\frac{1}{{{a_m}}}} .\end{align*}
这里用到了\[\frac{1}{{n{{\left( {n + 1} \right)}^2}}} \le \frac{1}{2}\frac{{2n + 1}}{{{n^2}{{\left( {n + 1} \right)}^2}}} = \frac{1}{2}\left[ {\frac{1}{{{n^2}}} - \frac{1}{{{{\left( {n + 1} \right)}^2}}}} \right].\]
注意到$a_n=n^\alpha,\alpha>1$时有
\[\mathop {\lim }\limits_{\alpha \to 1} \frac{{\sum\limits_{n = 1}^\infty {\frac{n}{{{a_1} + {a_2} + \cdots + {a_n}}}} }}{{\sum\limits_{j = 1}^\infty {\frac{1}{{{a_j}}}} }} = \mathop {\lim }\limits_{\alpha \to 1} \mathop {\lim }\limits_{N \to \infty } \frac{{\sum\limits_{n = 1}^N {\frac{n}{{{1^\alpha } + {2^\alpha } + \cdots + {n^\alpha }}}} }}{{\sum\limits_{n = 1}^N {\frac{1}{{{n^\alpha }}}} }} = \mathop {\lim }\limits_{\alpha \to 1} \mathop {\lim }\limits_{N \to \infty } \frac{{\frac{N}{{\frac{1}{{\alpha + 1}}{N^{\alpha + 1}} + O\left( {{N^\alpha }} \right)}}}}{{\frac{1}{{{N^\alpha }}}}} = 2.\]
(2)如法炮制.由柯西不等式我们得
\[\sum\limits_{m = 1}^n {\frac{{{m^2}}}{{{a_m}}}} \sum\limits_{m = 1}^n {{a_m}} \ge {\left( {1 + 2 + \cdots + n} \right)^2} = \frac{1}{4}{n^2}{\left( {n + 1} \right)^2},\]
即
\[\frac{{2n + 1}}{{{a_1} + {a_2} + \cdots + {a_n}}} \le \frac{{4\left( {2n + 1} \right)}}{{{n^2}{{\left( {n + 1} \right)}^2}}}\sum\limits_{m = 1}^n {\frac{{{m^2}}}{{{a_m}}}} .\]
因此
\begin{align*}\sum\limits_{n = 1}^\infty {\frac{{2n + 1}}{{{a_1} + {a_2} + \cdots + {a_n}}}} &\le 4\sum\limits_{n = 1}^\infty {\frac{{2n + 1}}{{{n^2}{{\left( {n + 1} \right)}^2}}}\sum\limits_{m = 1}^n {\frac{{{m^2}}}{{{a_m}}}} } = 4\sum\limits_{m = 1}^\infty {\frac{{{m^2}}}{{{a_m}}}\sum\limits_{n = m}^\infty {\frac{{2n + 1}}{{{n^2}{{\left( {n + 1} \right)}^2}}}} } \\&= 4\sum\limits_{m = 1}^\infty {\frac{{{m^2}}}{{{a_m}}}\sum\limits_{n = m}^\infty {\left[ {\frac{1}{{{n^2}}} - \frac{1}{{{{\left( {n + 1} \right)}^2}}}} \right]} } = 4\sum\limits_{m = 1}^\infty {\frac{1}{{{a_m}}}}.\end{align*}
练习题11.设$\displaystyle a_n \ge 0, n=1,2,\ldots,\sum\limits_{n=1}^{\infty}a_n < \infty$,证明:
$$\sum\limits_{n=1}^{\infty}(a_1a_2\cdots a_n)^{\frac{1}{n}} \le e \sum\limits_{n=1}^{\infty}a_n$$,且证明$e$是最优值.
此题再拓展下求证:$$\sum\limits_{n=1}^{\infty}(a_1a_2\cdots a_n)^{\frac{1}{n}} \le e \sum\limits_{n=1}^{\infty}[1-\frac{1}{2(n+1)}]a_n.$$
练习题12.如果正项级数$\displaystyle \sum\limits_{n=1}^{\infty}\frac{1}{p_n}$收敛,证明:级数$\displaystyle \sum\limits_{n=1}^{\infty}\frac{n^2}{(p_1+p_2+\cdots+p_n)^2}p_n$也收敛.
练习题13.设$\displaystyle \sum\limits_{n=1}^{\infty}a_n$为正项级数,且$\displaystyle \sum\limits_{k=1}^{n}(a_k-a_n)$对$n$有界,$a_n$单调递减趋于$0$,证明:级数$\displaystyle \sum\limits_{n=1}^{\infty}a_n$收敛.
练习题14.设级数$\displaystyle \sum\limits_{n=1}^{\infty}a_n$收敛, $\displaystyle \sum\limits_{n=1}^{\infty}(b_{n+1}-b_n)$绝对收敛,证明:级数$\displaystyle \sum\limits_{n=1}^{\infty}a_nb_n$收敛.
练习题15.设$a_n>0,\left\{ a_n-a_{n+1}\right\}$为一个严格递减的数列.如果$\sum_{n=1}^{\infty}a_n$收敛。试证:$$\lim\limits_{n \to \infty}\left( \cfrac{1}{a_{n+1}}-\cfrac{1}{a_n}\right)=+\infty.$$
练习题16.能否构造一个收敛数列$\sum\limits_{n=1}^{\infty}a_n$,使得级数$\sum\limits_{n=1}^{\infty}a_n^3$发散.
练习题17.设$\lim \limits_{n\rightarrow +\infty}x_n=+\infty$,正项级数$\sum\limits_{n=1}^{\infty}y_n$收敛,设$n_0$是某一自然数,
练习题18.设$\sum\limits_{n=1}^{\infty}a_n$是一正项收敛级数,且有$a_{n+1}< \frac{1}{2}(a_n+a_{n+2}),\,\frac{1}{a_{n+2}}-\frac{1}{a_{n+1}}\le \frac{1}{3}(\frac{1}{a_{n+3}}-\frac{1}{a_{n}})$,