哆嗒数学网里代数龙发的一系列级数题 - Eufisky - The lost book
裴礼文上的一道积分不等式
一道杂志征解题的解答

哆嗒数学网里代数龙发的一系列级数题

Eufisky posted @ 2015年10月03日 23:18 in 数学分析 with tags 级数 , 1248 阅读

练习题1.证明:$$\sum\limits_{n=1}^{\infty}\frac{1}{(n+1)\sqrt[p]{n}}\leq p,\,\,(p\ge1).$$

证:由Lagrange中值定理,我们有

\[\sqrt[p]{{n + 1}} - \sqrt[p]{n} = \frac{1}{p}{\xi ^{1/p - 1}} \ge \frac{1}{p}{\left( {n + 1} \right)^{1/p - 1}},\quad \xi  \in \left( {n,n + 1} \right).\]

因此\[\frac{1}{{\left( {n + 1} \right)\sqrt[p]{n}}} = \frac{{\sqrt[p]{{n + 1}} - \sqrt[p]{n}}}{{\sqrt[p]{n} \cdot \sqrt[p]{{n + 1}}}} \cdot \frac{{{{\left( {n + 1} \right)}^{1/p - 1}}}}{{\sqrt[p]{{n + 1}} - \sqrt[p]{n}}} \le p\frac{{\sqrt[p]{{n + 1}} - \sqrt[p]{n}}}{{\sqrt[p]{n} \cdot \sqrt[p]{{n + 1}}}} = p\left( {\frac{1}{{\sqrt[p]{n}}} - \frac{1}{{\sqrt[p]{{n + 1}}}}} \right).\]

立即有

\[\sum\limits_{n = 1}^\infty  {\frac{1}{{\left( {n + 1} \right)\sqrt[p]{n}}}}  \le p\sum\limits_{n = 1}^\infty  {\left( {\frac{1}{{\sqrt[p]{n}}} - \frac{1}{{\sqrt[p]{{n + 1}}}}} \right)}  = p.\]


练习题2.设$\displaystyle S_n=\sum\limits_{k=1}^{n}a_k, p>1,c>1$,证明:$$\sum\limits_{n=1}^{\infty}\frac{S_n^p}{n^c}\le K\sum\limits_{n=1}^{\infty}\frac{(na_n)^p}{n^c},$$并求出$K$的最优值.


练习题3.设$a_n$是有界的正数列,$p>0$,证明:

$$\frac{1}{a_1^p}+\sum\limits_{n=1}^{\infty}\frac{a_1a_2 \cdots a_n}{a_{n+1}^p} \ge \sum\limits_{n=0}^{\infty}(\frac{p}{p+1})^{n-p}.$$

练习题4.设$(0,+\infty)$上的函数列$f_n$由下式定义:$$f_1(x)=x,f_{n+1}(x)=(f_n(x)+\frac{1}{n})f_n(x).$$证明:存在唯一的正数$a$,使得对于所有$n$,$$0<f_n(x)<f_{n+1}(a)<1.$$


练习题5.$\displaystyle\sum\limits_{n=1}^{\infty}a_n$为正项收敛级数,$\displaystyle r_n=\sum\limits_{k=n}^{\infty}a_k,0<p<1$,证明:$$\sum\limits_{n=1}^{\infty}\frac{a_n}{r_n^p}<\frac{1}{1-p}\left(\sum\limits_{n=1}^{\infty}a_n \right)^{1-p}.$$


练习题6.设$a>0,a_n$是一个数列,并且$a_n>0,a_{n+1}\ge a_n$,证明:$$\sum\limits_{n=1}^{\infty}\frac{a_n-a_{n-1}}{a_na_{n-1}^a}$$收敛.

证:首先可以确定给定的级数是正项级数.

(1)当$0<a<1$时,我们利用Lagrange中值定理,有\[\frac{{a_n^a - a_{n - 1}^a}}{{{a_n} - {a_{n - 1}}}} = a{\xi ^{a - 1}} \ge aa_n^{a - 1},\quad \xi  \in \left( {{a_{n - 1}},{a_n}} \right).\]

因此\[\frac{{{a_n} - {a_{n - 1}}}}{{{a_n}a_{n - 1}^a}} = \frac{{a_n^a - a_{n - 1}^a}}{{a_n^aa_{n - 1}^a}} \cdot \left( {\frac{{{a_n} - {a_{n - 1}}}}{{a_n^a - a_{n - 1}^a}} \cdot a_n^{a - 1}} \right) \le \frac{1}{a}\frac{{a_n^a - a_{n - 1}^a}}{{a_n^aa_{n - 1}^a}} = \frac{1}{a}\left( {\frac{1}{{a_{n - 1}^a}} - \frac{1}{{a_n^a}}} \right).\]

故\[\sum\limits_{n = 1}^\infty  {\frac{{{a_n} - {a_{n - 1}}}}{{{a_n}a_{n - 1}^a}}}  \le \frac{1}{a}\sum\limits_{n = 1}^\infty  {\left( {\frac{1}{{a_{n - 1}^a}} - \frac{1}{{a_n^a}}} \right)}  = \frac{1}{a}\left( {\frac{1}{{a_0^a}} - \mathop {\lim }\limits_{n \to \infty } \frac{1}{{a_n^a}}} \right).\]

由于$\{a_n\}$是单增的正数列,则${\mathop {\lim }\limits_{n \to \infty } \frac{1}{{a_n^a}}}$必定存在,由此可知原正项级数收敛;

(2)当$a\geq1$时,由\[\sum\limits_{n = 1}^\infty  {\frac{{{a_n} - {a_{n - 1}}}}{{{a_n}a_{n - 1}^a}}}  = \sum\limits_{n = 1}^\infty  {\left( {\frac{1}{{a_{n - 1}^a}} - \frac{{a_{n - 1}^{1 - a}}}{{{a_n}}}} \right)}  \le \sum\limits_{n = 1}^\infty  {\left( {\frac{1}{{a_{n - 1}^a}} - \frac{1}{{a_n^a}}} \right)}  = \frac{1}{a}\left( {\frac{1}{{a_0^a}} - \mathop {\lim }\limits_{n \to \infty } \frac{1}{{a_n^a}}} \right)\]同样可知原正项级数收敛.

综上,级数$\sum\limits_{n=1}^{\infty}\frac{a_n-a_{n-1}}{a_na_{n-1}^a}$收敛.


练习题7.设$\displaystyle S(x)=\sum\limits_{n=1}^{\infty}\frac{2n}{(n^2 +x^2)^2}$,证明:$$\frac{1}{x^2 +\frac{1}{2\zeta(3)}}<S(x)<\frac{1}{x^2 +\frac{1}{6}},$$其中$\displaystyle \zeta(3)=\sum\limits_{n=1}^{\infty}\frac{1}{n^3}.$


练习题8.给定序列$\{a_n\}$,且$a_n$满足$a_1=2,a_2=8,a_n=4a_{n-1}-a_{n-2}(n=3,4,\ldots)$,证明:$$\sum\limits_{n=1}^{\infty}\text{arccot}\,\,a_n^2=\frac{\pi}{12}.$$


证.由${a_n} + {a_{n - 2}} = 4{a_{n - 1}}$可知\[{a_n}\left( {{a_n} + {a_{n - 2}}} \right) = 4{a_{n - 1}}{a_n} = {a_{n - 1}}\left( {{a_{n + 1}} + {a_{n - 1}}} \right),\]递推得\[a_n^2 - {a_{n + 1}}{a_{n - 1}} = a_{n - 1}^2 - {a_n}{a_{n - 2}} = \cdots = a_2^2 - {a_3}{a_1} = 4.\]

 

注意到$\mathrm{arccot\,} x$的一个公式

\[\mathrm{arccot\,} x-\mathrm{arccot\,} y=\mathrm{arccot\,}\left( \frac{1+xy}{y-x}\right).\]

因此有

\begin{align*}\mathrm{arccot\,} a_n^2 &= \mathrm{arccot\,} \frac{{{a_n} \cdot 4{a_n}}}{4} = \mathrm{arccot\,} \frac{{{a_n}\left( {{a_{n + 1}} + {a_{n - 1}}} \right)}}{4} =\mathrm{arccot\,} \frac{{{a_n}\left( {{a_{n + 1}} + {a_{n - 1}}} \right)}}{{a_n^2 - {a_{n + 1}}{a_{n - 1}}}}\\& = \mathrm{arccot\,} \frac{{1 + \frac{{{a_{n + 1}}}}{{{a_{n - 1}}}}}}{{\frac{{{a_n}}}{{{a_{n - 1}}}} - \frac{{{a_{n + 1}}}}{{{a_n}}}}} = \mathrm{arccot\,} \frac{{{a_{n + 1}}}}{{{a_n}}} -\mathrm{arccot\,} \frac{{{a_n}}}{{{a_{n - 1}}}}.\end{align*}

易得\[\mathop {\lim }\limits_{n \to \infty } \frac{{{a_{n + 1}}}}{{{a_n}}} = 2 + \sqrt 3 .\]

\[\sum\limits_{n = 1}^\infty {\mathrm{arccot\,} a_n^2} = \mathrm{arccot\,} a_1^2 + \sum\limits_{n = 2}^\infty {\mathrm{arccot\,} a_n^2} = \mathop {\lim }\limits_{n \to \infty } \mathrm{arccot\,} \frac{{{a_{n + 1}}}}{{{a_n}}} - \mathrm{arccot\,} \frac{{{a_2}}}{{{a_1}}} + \mathrm{arccot\,} a_1^2 = \frac{\pi }{{12}}.\]


练习题9.设$\displaystyle a_n=\arctan \frac{1}{n^2 +n +1}$,证明: $$\sum\limits_{k=1}^{\infty}\frac{a_k^{1/2}}{k^2} \le \sqrt{\frac{\pi}{3}}.$$


证.注意到

\begin{align*}\sum\limits_{k = 1}^\infty  {{a_k}}  &= \sum\limits_{k = 1}^\infty  {\arctan \frac{1}{{{k^2} + k + 1}}}  = \sum\limits_{k = 1}^\infty  {\left( {\arctan \frac{1}{k} - \arctan \frac{1}{{k + 1}}} \right)}  = \frac{\pi }{4}\\\sum\limits_{k = 1}^\infty  {\frac{1}{{{k^4}}}}  &= \zeta \left( 4 \right) = \frac{{{\pi ^4}}}{{90}}.\end{align*}

由Cauchy-Schwarz不等式可知

\[\sum\limits_{k = 1}^N {\frac{1}{{{k^4}}}}  \cdot \sum\limits_{k = 1}^N {{a_k}}  \ge {\left( {\sum\limits_{k = 1}^N {\frac{{a_k^{1/2}}}{{{k^2}}}} } \right)^2}.\]

令$N\to\infty$,我们有\[\sum\limits_{k = 1}^\infty  {\frac{{a_k^{1/2}}}{{{k^2}}}}  \le \sqrt {\frac{{{\pi ^4}}}{{90}} \cdot \frac{\pi }{4}}  = \sqrt {\frac{{{\pi ^5}}}{{360}}}  < \sqrt {\frac{\pi }{3}} .\]

也可通过放缩实现\[\sum\limits_{k = 1}^\infty  {\frac{1}{{{k^4}}}}  = 1 + \sum\limits_{k = 2}^\infty  {\frac{1}{{{k^4}}}}  < 1 + \sum\limits_{k = 2}^\infty  {\frac{1}{{\left( {k + 1} \right)\left( {k + 2} \right)}}}  = \frac{4}{3}.\]


练习题10.设$\displaystyle a_n > 0, S_n=\sum\limits_{k=1}^na_k$,证明:

(1)$\displaystyle\sum\limits_{n=1}^{\infty}\frac{n}{S_n} \le 2 \sum\limits_{n=1}^{\infty}\frac{1}{a_n}$;
(2)$\displaystyle\sum\limits_{n=1}^{\infty}\frac{2n+1}{S_n} \le 4 \sum\limits_{n=1}^{\infty}\frac{1}{a_n}$.

证.(1)由柯西不等式我们得

\[\sum\limits_{m = 1}^n {\frac{{{m^2}}}{{{a_m}}}} \sum\limits_{m = 1}^n {{a_m}}  \ge {\left( {1 + 2 +  \cdots  + n} \right)^2} = \frac{1}{4}{n^2}{\left( {n + 1} \right)^2},\]

即\[\frac{n}{{{a_1} + {a_2} +  \cdots  + {a_n}}} \le \frac{4}{{n{{\left( {n + 1} \right)}^2}}}\sum\limits_{m = 1}^n {\frac{{{m^2}}}{{{a_m}}}} .\]

因此

\begin{align*}\sum\limits_{n = 1}^\infty  {\frac{n}{{{a_1} + {a_2} +  \cdots  + {a_n}}}}  &\le 4\sum\limits_{n = 1}^\infty  {\frac{1}{{n{{\left( {n + 1} \right)}^2}}}\sum\limits_{m = 1}^n {\frac{{{m^2}}}{{{a_m}}}} }  = 4\sum\limits_{m = 1}^\infty  {\frac{{{m^2}}}{{{a_m}}}\sum\limits_{n = m}^\infty  {\frac{1}{{n{{\left( {n + 1} \right)}^2}}}} } \\&\le 4\sum\limits_{m = 1}^\infty  {\frac{{{m^2}}}{{{a_m}}}\sum\limits_{n = m}^\infty  {\frac{1}{2}\left[ {\frac{1}{{{n^2}}} - \frac{1}{{{{\left( {n + 1} \right)}^2}}}} \right]} }  = 2\sum\limits_{m = 1}^\infty  {\frac{1}{{{a_m}}}} .\end{align*}

这里用到了\[\frac{1}{{n{{\left( {n + 1} \right)}^2}}} \le \frac{1}{2}\frac{{2n + 1}}{{{n^2}{{\left( {n + 1} \right)}^2}}} = \frac{1}{2}\left[ {\frac{1}{{{n^2}}} - \frac{1}{{{{\left( {n + 1} \right)}^2}}}} \right].\]

 

注意到$a_n=n^\alpha,\alpha>1$时有

\[\mathop {\lim }\limits_{\alpha \to 1} \frac{{\sum\limits_{n = 1}^\infty {\frac{n}{{{a_1} + {a_2} + \cdots + {a_n}}}} }}{{\sum\limits_{j = 1}^\infty {\frac{1}{{{a_j}}}} }} = \mathop {\lim }\limits_{\alpha \to 1} \mathop {\lim }\limits_{N \to \infty } \frac{{\sum\limits_{n = 1}^N {\frac{n}{{{1^\alpha } + {2^\alpha } + \cdots + {n^\alpha }}}} }}{{\sum\limits_{n = 1}^N {\frac{1}{{{n^\alpha }}}} }} = \mathop {\lim }\limits_{\alpha \to 1} \mathop {\lim }\limits_{N \to \infty } \frac{{\frac{N}{{\frac{1}{{\alpha + 1}}{N^{\alpha + 1}} + O\left( {{N^\alpha }} \right)}}}}{{\frac{1}{{{N^\alpha }}}}} = 2.\]

(2)如法炮制.由柯西不等式我们得

\[\sum\limits_{m = 1}^n {\frac{{{m^2}}}{{{a_m}}}} \sum\limits_{m = 1}^n {{a_m}} \ge {\left( {1 + 2 + \cdots + n} \right)^2} = \frac{1}{4}{n^2}{\left( {n + 1} \right)^2},\]

\[\frac{{2n + 1}}{{{a_1} + {a_2} + \cdots + {a_n}}} \le \frac{{4\left( {2n + 1} \right)}}{{{n^2}{{\left( {n + 1} \right)}^2}}}\sum\limits_{m = 1}^n {\frac{{{m^2}}}{{{a_m}}}} .\]

因此

\begin{align*}\sum\limits_{n = 1}^\infty {\frac{{2n + 1}}{{{a_1} + {a_2} + \cdots + {a_n}}}} &\le 4\sum\limits_{n = 1}^\infty {\frac{{2n + 1}}{{{n^2}{{\left( {n + 1} \right)}^2}}}\sum\limits_{m = 1}^n {\frac{{{m^2}}}{{{a_m}}}} } = 4\sum\limits_{m = 1}^\infty {\frac{{{m^2}}}{{{a_m}}}\sum\limits_{n = m}^\infty {\frac{{2n + 1}}{{{n^2}{{\left( {n + 1} \right)}^2}}}} } \\&= 4\sum\limits_{m = 1}^\infty {\frac{{{m^2}}}{{{a_m}}}\sum\limits_{n = m}^\infty {\left[ {\frac{1}{{{n^2}}} - \frac{1}{{{{\left( {n + 1} \right)}^2}}}} \right]} } = 4\sum\limits_{m = 1}^\infty {\frac{1}{{{a_m}}}}.\end{align*}


练习题11.设$\displaystyle a_n \ge 0, n=1,2,\ldots,\sum\limits_{n=1}^{\infty}a_n < \infty$,证明:

$$\sum\limits_{n=1}^{\infty}(a_1a_2\cdots a_n)^{\frac{1}{n}} \le e \sum\limits_{n=1}^{\infty}a_n$$,且证明$e$是最优值.

此题再拓展下求证:$$\sum\limits_{n=1}^{\infty}(a_1a_2\cdots a_n)^{\frac{1}{n}} \le e \sum\limits_{n=1}^{\infty}[1-\frac{1}{2(n+1)}]a_n.$$

 


练习题12.如果正项级数$\displaystyle \sum\limits_{n=1}^{\infty}\frac{1}{p_n}$收敛,证明:级数$\displaystyle \sum\limits_{n=1}^{\infty}\frac{n^2}{(p_1+p_2+\cdots+p_n)^2}p_n$也收敛.


练习题13.设$\displaystyle \sum\limits_{n=1}^{\infty}a_n$为正项级数,且$\displaystyle \sum\limits_{k=1}^{n}(a_k-a_n)$对$n$有界,$a_n$单调递减趋于$0$,证明:级数$\displaystyle \sum\limits_{n=1}^{\infty}a_n$收敛.


练习题14.设级数$\displaystyle \sum\limits_{n=1}^{\infty}a_n$收敛, $\displaystyle \sum\limits_{n=1}^{\infty}(b_{n+1}-b_n)$绝对收敛,证明:级数$\displaystyle \sum\limits_{n=1}^{\infty}a_nb_n$收敛.


练习题15.设$a_n>0,\left\{ a_n-a_{n+1}\right\}$为一个严格递减的数列.如果$\sum_{n=1}^{\infty}a_n$收敛。试证:$$\lim\limits_{n \to \infty}\left( \cfrac{1}{a_{n+1}}-\cfrac{1}{a_n}\right)=+\infty.$$


练习题16.能否构造一个收敛数列$\sum\limits_{n=1}^{\infty}a_n$,使得级数$\sum\limits_{n=1}^{\infty}a_n^3$发散.


练习题17.设$\lim \limits_{n\rightarrow +\infty}x_n=+\infty$,正项级数$\sum\limits_{n=1}^{\infty}y_n$收敛,设$n_0$是某一自然数,

若当$n>n_0$时有$x_n <x_{n+1},x_n< \frac{1}{2}(x_{n-1}+x_{n+1}),y_{n+1}< y_n$,
求证:$$\lim \limits_{n\rightarrow +\infty}\frac{x_ny_n}{x_{n+1}-x_n}=0.$$

练习题18.设$\sum\limits_{n=1}^{\infty}a_n$是一正项收敛级数,且有$a_{n+1}< \frac{1}{2}(a_n+a_{n+2}),\,\frac{1}{a_{n+2}}-\frac{1}{a_{n+1}}\le \frac{1}{3}(\frac{1}{a_{n+3}}-\frac{1}{a_{n}})$,

求极限$$\lim\limits_{n \rightarrow +\infty}\frac{\displaystyle a_na_{n+2}(a_n-a_{n+1})}{\displaystyle a_na_{n+1}-2a_na_{n+2}+a_{n+1}a_{n+2}}.$$

登录 *


loading captcha image...
(输入验证码)
or Ctrl+Enter