谢惠民一道全微分题 - Eufisky - The lost book
谢惠民上册的一道不等式题
谢之题解:重积分的应用举例

谢惠民一道全微分题

Eufisky posted @ 2015年10月13日 04:23 in 谢惠民 with tags 谢惠民 多元 , 1174 阅读

前几天徐半仙问了我谢惠民下册P325页上一道难度稍大的全微分题目,利用今晚美好的独处时间(笑哭),做了下,解答如下:

对于以下一阶微分形式$\omega $,求函数$M(x,y)\neq0$, 使得在适当的区域内$M\omega $为全微分,并求其原函数:

(1) $\displaystyle \omega = \left[ { - y\sqrt {{x^2} + {y^2} + 1} - x\left( {{x^2} + {y^2}} \right)} \right]dx + \left[ {x\sqrt {{x^2} + {y^2} + 1} - y\left( {{x^2} + {y^2}} \right)} \right]dy$;

 

(2) $\displaystyle \omega = x\left[ {{{\left( {ay + bx} \right)}^3} + a{y^3}} \right]dx + y\left[ {{{\left( {ay + bx} \right)}^3} + b{x^3}} \right]dy$.

解:(1)取\[M = \frac{1}{{\left( {{x^2} + {y^2}} \right)\sqrt {{x^2} + {y^2} + 1} }},\]我们有

\[M\omega = \left( { - \frac{y}{{{x^2} + {y^2}}} - \frac{x}{{\sqrt {{x^2} + {y^2} + 1} }}} \right)dx + \left( {\frac{x}{{{x^2} + {y^2}}} - \frac{y}{{\sqrt {{x^2} + {y^2} + 1} }}} \right)dy.\]

则有$P = - \frac{y}{{{x^2} + {y^2}}} - \frac{x}{{\sqrt {{x^2} + {y^2} + 1} }},Q = \frac{x}{{{x^2} + {y^2}}} - \frac{y}{{\sqrt {{x^2} + {y^2} + 1} }}$,且\[\frac{{\partial P}}{{\partial y}} = \frac{{{y^2} - {x^2}}}{{{{\left( {{x^2} + {y^2}} \right)}^2}}} + \frac{{xy}}{{{{\left( {{x^2} + {y^2} + 1} \right)}^{3/2}}}} = \frac{{\partial Q}}{{\partial x}}.\]

此时原函数为

\begin{align*}\varphi \left( {x,y} \right) = &\int_{{x_0}}^x {P\left( {x,{y_0}} \right)dx} + \int_{{y_0}}^y {Q\left( {x,y} \right)dy} + C'\\= &\int_{{x_0}}^x {\left( { - \frac{{{y_0}}}{{{x^2} + y_0^2}} - \frac{x}{{\sqrt {{x^2} + y_0^2 + 1} }}} \right)dx} + \int_{{y_0}}^y {\left( {\frac{x}{{{x^2} + {y^2}}} - \frac{y}{{\sqrt {{x^2} + {y^2} + 1} }}} \right)dy} + C'\\= &\left( { - \arctan \frac{x}{{{y_0}}} - \sqrt {{x^2} + y_0^2 + 1} + \arctan \frac{{{x_0}}}{{{y_0}}} + \sqrt {x_0^2 + y_0^2 + 1} } \right)\\&+ \left( {\arctan \frac{y}{x} - \sqrt {{x^2} + {y^2} + 1} - \arctan \frac{{{y_0}}}{x} + \sqrt {{x^2} + y_0^2 + 1} } \right) + C'\\=& \arctan \frac{y}{x} - \sqrt {{x^2} + {y^2} + 1} + C.\end{align*}

 

值得一提的是:本题的积分因子是通过Wolfram Alpha求解出ODE,然后分别对$x,y$求偏导得来的.

 

(2)丁同仁书上一定理:


齐次方程$P(x,y)dx+Q(x,y)dy=0$有积分因子$M=\frac{1}{xP+yQ}$.


 

定理的证明:作变换$y=ux$,则由$P\left( {x,y} \right)dx + Q\left( {x,y} \right)dy = 0$是齐次方程,我们有$$P\left( {x,ux} \right)dx + Q\left( {x,ux} \right)\left( {udx + xdu} \right) = \left[ {{x^m}P\left( {1,u} \right) + u{x^m}Q\left( {1,u} \right)} \right]dx + {x^{m + 1}}Q\left( {1,u} \right)du = 0.$$

 

方程两边同乘\[\frac{1}{{xP + yQ}} = \frac{1}{{{x^{m + 1}}\left[ {P\left( {1,u} \right) + uQ\left( {1,u} \right)} \right]}},\]则有

\[\frac{1}{x}dx + \frac{{Q\left( {1,u} \right)}}{{P\left( {1,u} \right) + uQ\left( {1,u} \right)}}du = 0.\]显然此方程为全微分方程.证毕.

 

取\[M = \frac{1}{{xP + yQ}} = \frac{1}{{\left( {{x^2} + {y^2}} \right){{\left( {ay + bx} \right)}^3} + {x^2}{y^2}\left( {ay + bx} \right)}}.\]

则有

\[P' = \frac{{x{{\left( {ay + bx} \right)}^3} + ax{y^3}}}{{\left( {{x^2} + {y^2}} \right){{\left( {ay + bx} \right)}^3} + {x^2}{y^2}\left( {ay + bx} \right)}},Q' = \frac{{y{{\left( {ay + bx} \right)}^3} + b{x^3}y}}{{\left( {{x^2} + {y^2}} \right){{\left( {ay + bx} \right)}^3} + {x^2}{y^2}\left( {ay + bx} \right)}}.\]

 

我猜此时一定成立\[\frac{{\partial P'}}{{\partial y}} = \frac{{\partial Q'}}{{\partial x}}.\]

 

事实上

\begin{align*}\frac{{\partial P'}}{{\partial y}} = & - 2xy{\left( {ay + bx} \right)^6} - 2{x^3}y{\left( {ay + bx} \right)^4} + \left( {5a{x^3}{y^2} + ax{y^4}} \right){\left( {ay + bx} \right)^3}\\& - 3{a^2}x{y^3}\left( {{x^2} + {y^2}} \right){\left( {ay + bx} \right)^2} + a{x^3}{y^4}\left( {ay + bx} \right) - {a^2}{x^3}{y^5}\\\frac{{\partial Q'}}{{\partial x}} = &- 2xy{\left( {ay + bx} \right)^6} - 2x{y^3}{\left( {ay + bx} \right)^4} + \left( {5b{x^2}{y^3} + b{x^4}y} \right){\left( {ay + bx} \right)^3}\\& - 3{b^2}{x^3}y\left( {{x^2} + {y^2}} \right){\left( {ay + bx} \right)^2} + b{x^4}{y^3}\left( {ay + bx} \right) - {b^2}{x^5}{y^3}.\end{align*}

 

于是

\begin{align*}\varphi \left( {x,y} \right) &= \int_{{x_0}}^x {P'\left( {x,{y_0}} \right)dx} + \int_{{y_0}}^y {Q'\left( {x,y} \right)dy} + C'\\&= \frac{1}{2}\ln \left[ {\left( {{x^2} + {y^2}} \right){{\left( {ay + bx} \right)}^3} + {x^2}{y^2}\left( {ay + bx} \right)} \right] - \frac{3}{2}\ln \left( {ay + bx} \right) + C.\end{align*}

 

事实上,我们还可取\[M = \frac{1}{{{{\left( {ay + bx} \right)}^3}}},\]由此得到

\[\varphi \left( {x,y} \right) = \frac{{{x^2} + {y^2}}}{2} + \frac{{{x^2}{y^2}}}{{2{{\left( {ay + bx} \right)}^2}}} + C.\]



登录 *


loading captcha image...
(输入验证码)
or Ctrl+Enter