两个奇怪的积分 - Eufisky - The lost book
i的i次方等于多少?
复分析作业

两个奇怪的积分

Eufisky posted @ 2015年10月21日 04:26 in 复分析 with tags 积分计算 , 1301 阅读
Evaluate integral
$$\int_{0}^{1}{x^{-x}(1-x)^{x-1}\sin{\pi x}dx}$$
Well,I think we have
$$\int_{0}^{1}{x^{-x}(1-x)^{x-1}\sin{\pi x}dx}=\frac{\pi}{e}$$
 
and
 
$$\int_{0}^{1}{x^{x}(1-x)^{1-x}\sin{\pi x}dx}=\frac{e\pi}{24}$$ 
 
With such nice result of these integral,why isn't worth to evaluate it?
 
I found a solution about the second one,but I wonder it will work for the first one
Note
$$ S=\int_{0}^{1}{\sin{\pi x}x^{x}(1-x)^{1-x}dx}-\int_{0}^{1}{(1-x)e^{(i\pi+\ln{x}-\ln{(1-x)})x}dx} $$
Let $t=\ln{x}-\ln{(1-x)}$,$x=\frac{e^{t}}{1+e^{t}}$
Thus
\begin{align}S&=\int_{-\infty}^{+\infty}{\frac{1}{e^{t}+1}e^{(i\pi+t)\frac{e^{t}}{1+e^t}}\frac{e^{t}}{(1+e^{t})^{2}}dt}\\ &=\int_{-\infty+i\pi}^{-\infty-i\pi}{e^{\frac{te^{t}}{e^{t}-1} } \frac{e^{t}}{(e^{t}-1)^{3}}dt}\end{align}
Due to
$$ f(z)=e^{\frac{te^{t}}{e^{t}-1} } \frac{e^{t}}{(e^{t}-1)^{3}},\qquad D=\{Z\in C|-\pi\leq Im(z) \leq \pi\}$$
Therefore
$res(f,0)=-\frac{e}{24}$when $z=0$
with $ \zeta_{R}=\gamma_{R}+o_{R}+\tau_{R}$
$$\oint_{\zeta_{R}}{f(z)dz}=-2\pi i\cdot res(f,0)=\frac{2i\pi e}{24}$$
because
$$ \{z_{n}\}\subset D,\qquad |z_{n}|\rightarrow\infty $$
Therefore
$$ 2S=2\lim_{R\rightarrow \infty}\int_{\gamma_{R}}{f(z)dz} $$
gives
$$ \int_{0}^{1}{\sin{\pi x}x^{x}(1-x)^{1-x}dx}=Im(S)=\frac{e\pi}{24} $$
 
My friend tian_275461 told me he use a simliar method to deal with the first one to obtain the result $\frac{\pi}{e}$,but I am not figure it out.

第一个积分的解答:

Exactly the same method works for the other case.
$$\int_0^1 x^{-x} (1-x)^{x-1}\sin{\pi x} dx = \mathrm{Im}\left[\int_0^1 \frac{e^{(i\pi+\ln(1-x)-\ln x)x}}{1-x}dx\right]$$
Write $t=\ln((1-x)/x)$ and $z=t+i\pi$ as you did above to get
$$S = \int_0^1 \frac{e^{(i\pi+\ln(1-x)-\ln x)x}}{1-x}dx=\int_{-\infty+i\pi}^{\infty+i\pi} \frac{e^{\frac{z}{1-e^z}}}{1-e^z}dz$$
 
Then with $$f(z)=\frac{e^{\frac{z}{1-e^z}}}{1-e^z}$$
the only pole is at $z=0$, $res(f,0)=-\frac{1}{e}$ and in the limit $2S = \oint f(z)dz=-2\pi i \cdot res(f,0) = 2\pi i/e$ and your answer follows.

第二个积分的另一种求法:

This one can be done with "residue at infinity" calculation. This method is shown in the Example VI of http://en.wikipedia.org/wiki/Methods_of_contour_integration
 
First, we use $z^z = \exp ( z \log z )$ where $\log z$ is defined for $-\pi\leq \arg z < \pi$. 
 
For $(1-z)^{1-z} = \exp ( (1-z)\log (1-z) )$, we use $\log (1-z)$ defined for $0\leq \arg(1-z) <2\pi$. 
 
Then, let  $f(z)= \exp( i\pi z + z \log z + (1-z) \log (1-z) )$. 
 
As shown in the Ex VI in the wikipedia link, we can prove that $f$ is continuous on $(-\infty, 0)$ and $(1,\infty)$, so that the cut of $f(z)$ is $[0,1]$. 
 
We use the contour: (consisted of upper segment: slightly above $[0,1]$, lower segment: slightly below $[0,1]$, circle of small radius enclosing $0$, and circle of small radius enclosing $1$, that looks like a dumbbell having knobs at $0$ and $1$, can someone edit this and include a picture of it please? In fact, this is also the same contour as in Ex VI, with different endpoints.)
 
On the upper segment, the function $f$ gives, for $0\leq r \leq 1$, 
$$\exp(i\pi r) r^r (1-r)^{1-r} \exp( (1-r) 2\pi i ).$$ 
 
On the lower segment, the function $f$ gives, for $0\leq r \leq 1$, 
$$\exp(i\pi r) r^r(1-r)^{1-r}. $$
 
 
Since the functions are bounded, the integrals over circles vanishes when the radius tend to zero. 
 
Thus, the integral of $f(z)$ over the contour, is the integral over the upper and lower segments, which contribute to
 
$$\int_0^1 \exp(i\pi r) r^r (1-r)^{1-r} dr - \int_0^1 \exp(-i\pi r) r^r(1-r)^{1-r} dr$$
 
which is 
$$2i \int_0^1 \sin(\pi r) r^r (1-r)^{1-r} dr.$$
 
By the Cauchy residue theorem, the integral over the contour is
$$-2\pi i \textrm{Res}_{z=\infty} f(z) = 2\pi i \textrm{Res}_{z=0} \frac{1}{z^2} f(\frac 1 z).$$
 
From a long and tedious calculation of residue, it turns out that the value on the right is 
$$2i \frac{\pi e}{24}.$$
Then we have the result:
$$ \int_0^1 \sin(\pi r) r^r (1-r)^{1-r} dr = \frac{\pi e}{24}.$$
 
我们也可得到\begin{align*} \int_{0}^{1} e^{i \pi x} \, x^{x} (1-x)^{1-x} \, dx = i \, \frac{\pi e}{4!} \end{align*}

来自:http://math.stackexchange.com/questions/324647/integrate-int-01x-x1-xx-1-sin-pi-xdx

http://math.stackexchange.com/questions/958624/prove-that-int-01-sin-pi-xxx1-x1-x-dx-frac-pi-e24

Avatar_small
my wgu 说:
2022年8月20日 01:31

Student Portal - Western Governors University. Access the WGU student portal here. Students can find instructions for initial log in to the learning portal for the university. This will give you access to the WGU Student Portal, my wgu which you will need to access in order to complete the financial aid process and/or make your first tuition 2021


登录 *


loading captcha image...
(输入验证码)
or Ctrl+Enter