又两个积分
计算$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}{\ln{(\ln{\tan{x}})}dx}.$$
求\[\int_{0}^{\infty}\sin x \sin \sqrt{x}\,dx.\]
这个积分用Alpha给的是发散结果.下面的计算是论坛的结果:
I'm posting an asnwer (of the $2$ I have) using real analysis methods:
\begin{align*}\int_{0}^{\infty}\sin x \sin \sqrt{x}\,dx &\overset{\sqrt{x}=u}{=\! =\! =\!}2\int_{0}^{\infty}u\sin u \sin u^2 \,du \\&=-\int_{0}^{\infty}u\cos \left ( u^2+u \right )\,du+\int_{0}^{\infty}u\cos(u^2-u)\,du \\&\overset{u \mapsto u+1}{=\! =\! =\! =\!}-\int_{0}^{\infty}u\cos(u^2+u)\,du+\int_{-1}^{\infty}\left ( u+1 \right )\cos\left ( u^2+u \right )\,du \\&= \int_{0}^{\infty}\cos\left ( u^2+u \right )\,du+\int_{-1}^{0}\left ( u+1 \right )\cos\left ( u^2+u \right )\,du\\&\overset{u={\rm v}-\frac{1}{2}}{=\! =\! =\! =\!}\int_{1/2}^{\infty}\cos\left ( {\rm v}^2-\frac{1}{4} \right )\,d{\rm v}+\int_{-1/2}^{1/2}\left ( {\rm v}+\frac{1}{2} \right )\cos \left ( {\rm v}^2-\frac{1}{4} \right )\,d{\rm v} \\&= \int_{0}^{\infty}\cos \left ( {\rm v}^2-\frac{1}{4} \right )\,d{\rm v}+\\& \left [ \int_{-1/2}^{1/2}{\rm v}\cos \left ( {\rm v}^2-\frac{1}{4} \right )\,d{\rm v}+\frac{1}{2}\int_{-1/2}^{0}\cos\left ( {\rm v}^2-\frac{1}{2} \right )\,d{\rm v}- \frac{1}{2}\int_{0}^{1/2}\cos\left ( {\rm v}^2-\frac{1}{2} \right )\,d{\rm v} \right ]\end{align*}
However, the equation in the bracket equals zero due to symmetry.
Hence:
\begin{align*}\int_{0}^{\infty}\sin x \sin x^2\,dx&=\int_{0}^{\infty}\cos\left ( {\rm v}^2-\frac{1}{2} \right )\,d{\rm v}\\&=\cos \frac{1}{4}\int_{0}^{\infty}\cos {\rm v}^2\,d{\rm v}+\sin \frac{1}{4}\int_{0}^{\infty}\sin {\rm v}^2\,d{\rm v}\\&\overset{(*)}{=}\int_{0}^{\infty}\sin {\rm v}^2\,d{\rm v}\left ( \cos \frac{1}{4}+\sin \frac{1}{4} \right )\\&=\frac{\sqrt{\pi}}{2}\sin \left ( \frac{3\pi-1}{4} \right )\;\; \;\;\;\; \square\end{align*}
$(*)$ We used the Frensel integrals stating that $\displaystyle \int_{0}^{\infty}\cos x^2 \,dx=\int_{0}^{\infty}\sin x^2 \,dx=\frac{1}{2}\sqrt{\frac{\pi}{2}}$.