级数方法解答的一道积分不等式题
百年云烟只过眼,不为繁华易素心
一道略火的题,由雷神解答:
证明\[\int_0^{2\left( {k + 1} \right)} {\frac{{{x^k}}}{{k!}}{e^{ - x}}dx} > \frac{k}{{1 + k}},\quad k = 0,1,2, \cdots .\]
证.注意到\[\int {\frac{{{x^k}}}{{k!}}{e^{ - x}}dx} = - {e^{ - x}}\sum\limits_{i = 0}^k {\frac{{{x^i}}}{i}} + C.\]
因此
\[\int_0^{2\left( {k + 1} \right)} {\frac{{{x^k}}}{{k!}}{e^{ - x}}dx} = - \left. {{e^{ - x}}\sum\limits_{i = 0}^k {\frac{{{x^i}}}{i}} } \right|_0^{2\left( {k + 1} \right)} = 1 - {e^{ - 2\left( {k + 1} \right)}}\sum\limits_{i = 0}^k {\frac{{{{\left( {2k + 2} \right)}^i}}}{i}} .\]
等价于证明\[1 - {e^{ - 2\left( {k + 1} \right)}}\sum\limits_{i = 0}^k {\frac{{{{\left( {2k + 2} \right)}^i}}}{i}} > \frac{k}{{1 + k}}.\]
即证
\[{e^{2k + 2}} > \left( {k + 1} \right)\sum\limits_{i = 0}^k {\frac{{{{\left( {2k + 2} \right)}^i}}}{{i!}}} \Leftrightarrow \sum\limits_{i = 0}^\infty {\frac{{{{\left( {2k + 2} \right)}^i}}}{{i!}}} > \left( {k + 1} \right)\sum\limits_{i = 0}^k {\frac{{{{\left( {2k + 2} \right)}^i}}}{{i!}}} .\]
下面证明\[\sum\limits_{i = 0}^{2k + 1} {\frac{{{{\left( {2k + 2} \right)}^i}}}{{i!}}} > \left( {k + 1} \right)\sum\limits_{i = 0}^k {\frac{{{{\left( {2k + 2} \right)}^i}}}{{i!}}} .\]
等价于证明
\[\sum\limits_{i = k + 1}^{2k + 1} {\frac{{{{\left( {2k + 2} \right)}^i}}}{{i!}}} = \sum\limits_{i = 0}^k {\frac{{{{\left( {2k + 2} \right)}^{i + k + 1}}}}{{\left( {i + k + 1} \right)!}}} > k\sum\limits_{i = 0}^k {\frac{{{{\left( {2k + 2} \right)}^i}}}{{i!}}} .\]
只需证明\[\frac{{{{\left( {2k + 2} \right)}^{i + k + 1}}}}{{\left( {i + k + 1} \right)!}} > k\frac{{{{\left( {2k + 2} \right)}^i}}}{{i!}} \Leftrightarrow {\left( {2k + 2} \right)^{k + 1}} > k\frac{{\left( {i + k + 1} \right)!}}{{i!}}.\]
而
\[{\left( {2k + 2} \right)^{k + 1}} > k\frac{{\left( {2k + 1} \right)!}}{{k!}} = k\left( {k + 1} \right) \cdots \left( {2k + 1} \right) > k\frac{{\left( {i + k + 1} \right)!}}{{i!}}\]是显然的.
2023年9月20日 00:23
Maharashtra Board 1st Class Exam Date Sheet 2024 Available at Official Website. This Maha Board Primary School Exam Attended Every Year More than 50 Laks of Students, MSCE Pune Little Students Studying Maharashtra Class Revised Syllabus 2024 helps Students to Learn Logic and order and hence,Maharashtra Elementary Syllabus 2024 is Designed in Accordance with the NCERT Based Maha Board 1st Class Syllabus 2024 Guidelines and helps Students to get an Overview of the Marathi, English Medium All Subject, Students Should Perform well in the Exam, which is Possible by Understanding the Syllabus and Studying Accordingly.To Prepare well for the Maharashtra Class get Promoted to the next Standard, Understanding of the syllabus of Maharashtra State Board for each subject is essential