Ahmed’s integrals 和 Coxeter’s integrals - Eufisky - The lost book
级数方法解答的一道积分不等式题
FoxTrot Series

Ahmed’s integrals 和 Coxeter’s integrals

Eufisky posted @ 2015年12月11日 21:11 in 数学分析 with tags 积分计算 , 1867 阅读
最后得到Ahmed’s integrals的一个简单表达式.
 
1. 主要结果
 
一般地,我们将含参数$p,q,r$的Ahmed’s integral定义成
$$A(p, q, r) := \int_{0}^{1} \frac{\arctan q \sqrt{p^{2}x^{2} + 1} }{q \sqrt{p^{2}x^{2} + 1}} \frac{p q r}{(r^{2}+1)p^{2}x^{2} + 1} \, dx.$$
则下面的定理成立:
 
定理. 对任意$p, q, r > 0$,记$\rho, \alpha, \beta, \gamma$为
\begin{align*} \rho &= \frac{1-pqr}{1+pqr}, & \alpha &= 2\arctan\left( \frac{qr}{\sqrt{r^{2}+1}} \right), \\ \beta &= 2\arctan\left( \frac{rp}{\sqrt{p^{2}+1}} \right), & \gamma &= 2\arctan\left( r\sqrt{q^{2}+1} \right). \end{align*}
我们有
\begin{align*} A(p, q, r) &= \frac{1}{8} \left( \alpha(2\pi-\alpha) + \beta(2\pi-\beta) – \gamma(2\pi-\gamma) \right) \\ &\qquad – \frac{1}{2}\Re \left( \operatorname{Li}_{2}(\rho) – \operatorname{Li}_{2}(\rho e^{i\alpha}) – \operatorname{Li}_{2}(\rho e^{i\beta}) + \operatorname{Li}_{2}(\rho e^{i\gamma}) \right). \end{align*}
基于此定理,只要不产生混乱,我们都可写成
$$A(p, q, r) = A(\rho \mid \alpha, \beta, \gamma)$$
在此,当然, $\rho, \alpha, \beta, \gamma$是出现在上述定理中的参数.
 
2. 推论
 
虽然一般的结果包含在dilogarithmic的一支,但他们或者$\rho = 0$或者当$\rho= -1$时,碰巧可以简化.
 
推论 1.将$\rho, \alpha, \beta, \gamma$记为主定理那样的数.如果$pqr = 1$, 则
$$A(p, q, r) = \frac{1}{8} \left( \alpha(2\pi-\alpha) + \beta(2\pi-\beta) – \gamma(2\pi-\gamma) \right).$$
在定理中令$\rho = 0$便可得到.
 
比如, 传统上的Ahmed’s integral可以这样计算:
\begin{align*} \int_{0}^{1} \frac{\arctan\sqrt{x^{2} + 2}}{\sqrt{x^{2} + 2}} \, \frac{dx}{x^{2}+1} &= A\left( \frac{1}{\sqrt{2}}, \sqrt{2}, 1 \right) \\ &= A\left( 0 \, \middle| \, \frac{\pi}{2}, \frac{\pi}{3}, \frac{2\pi}{3} \right) \\ &= \frac{5\pi^{2}}{96}. \end{align*}
 
推论 2. 将$\rho, \alpha, \beta, \gamma$记为主定理那样的数. 如果$pqr \to \infty$, 则
$$A(p, q, r) = \frac{\pi}{4} \left( \alpha + \beta – \gamma \right).$$
证.当$pqr \to \infty$, 我们有$\rho \to -1$.由等式
$$\Re\operatorname{Li}_{2}(-e^{i\theta}) = \operatorname{Li}_{2}(-1) + \frac{\theta^{2}}{4} \quad |\theta| \leq \pi,$$
推出
\begin{align*} A(-1 \mid \alpha, \beta, \gamma) &= \frac{\pi}{4} \left( \alpha + \beta – \gamma \right). \end{align*}
 
3. 在Coxeter’s integrals上的应用
 
命题. 假设$ a \geq |b|$并且对$\theta \in (0, \beta)$,有$a \cos\theta + b > 0$. 则我们有
\begin{align*} &\int_{0}^{\beta} \arctan \sqrt{\frac{\cos\theta + 1}{a\cos\theta + b}} \, d\theta \\ &= 2 A \left( \sqrt{\frac{a-b}{2} \cdot \frac{1-\cos\beta}{a\cos\beta+ b}}, \sqrt{\frac{2}{a+b}}, \sqrt{\frac{a+b}{a-b}} \right) \\ &= 2 A \left( \frac{1-k}{1+k} \, \middle| \, \alpha, \beta, \gamma\right) \end{align*}
其中 $k, \alpha, \gamma$是通过
$$k = \left( \frac{1-\cos\beta}{a\cos\beta+ b} \right)^{1/2}, \quad \alpha = \arccos\left(\frac{a-1}{a+1}\right), \quad \gamma = \arccos\left(-\frac{1+b}{1+a}\right).$$定义的.
比如,一个经典的Coxeter’s integrals可以这样计算:
\begin{align*} \int_{0}^{\frac{\pi}{2}} \arccos \left( \frac{\cos \theta}{1+2\cos \theta} \right) \; d\theta &= 2 \int_{0}^{\frac{\pi}{2}} \arctan \sqrt{\frac{\cos \theta + 1}{3\cos \theta + 1}} \, d\theta \\ &= 4 A \left( 0 \, \middle| \, \frac{\pi}{3}, \frac{\pi}{2}, \frac{2\pi}{3} \right) \\ &= \frac{5\pi^{2}}{24}. \end{align*}
 
许多其它的Coxeter’s integrals可以直接由此命题获得, 结合推论1或推论2. 一些更复杂的情形可能需要polylogarithmic作为阶梯. 例如,
\begin{align*} \int_{0}^{\frac{\pi}{3}} \arccos \left( \frac{\cos \theta}{1+2\cos \theta} \right) \; d\theta &= 2 \int_{0}^{\frac{\pi}{3}} \arctan \sqrt{\frac{\cos \theta + 1}{3\cos \theta + 1}} \, d\theta \\ &= 4 A \left( \frac{\sqrt{5}-1}{\sqrt{5}+1} \, \middle| \, \frac{\pi}{3}, \frac{\pi}{3}, \frac{2\pi}{3} \right). \end{align*}
为了简化此表达式需要以下的polylogarithmic阶梯工具,
$$\operatorname{Li}_{2}(\rho) – \operatorname{Li}_{2}(\rho^{2}) – \operatorname{Li}_{2}(\rho^{3}) + \frac{1}{3}\operatorname{Li}_{2}(\rho^{6}), \quad \rho = \frac{\sqrt{5}-1}{\sqrt{5}+1}.$$
由此可知表达式得到的值为 $\pi^{2}/45$, 因此我们最后得到
$$\int_{0}^{\frac{\pi}{3}} \arccos \left( \frac{\cos \theta}{1+2\cos \theta} \right) \; d\theta = \frac{2\pi^{2}}{15}.$$
 

下面给出自己的一些结果:

\begin{align*}\int_0^{\frac{\pi }{3}} {\arccos \frac{{1 - \cos x}}{{2\cos x}}dx}  &= 2\int_0^{\frac{\pi }{3}} {\arctan \sqrt {\frac{{ - 1 + 3\cos x}}{{1 + \cos x}}} dx}  = 2\int_0^{\frac{\pi }{3}} {\left( {\frac{\pi }{2} - \arctan \sqrt {\frac{{\cos x + 1}}{{3\cos x - 1}}} } \right)dx} \\&= \frac{{{\pi ^2}}}{3} - 2\int_0^{\frac{\pi }{3}} {\arctan \sqrt {\frac{{\cos x + 1}}{{3\cos x - 1}}} dx}  = \frac{{{\pi ^2}}}{3} - 4A\left( {1\left| {\frac{\pi }{3},\frac{\pi }{3},\frac{\pi }{2}} \right.} \right).\end{align*}
其中用到了\[\cos x = \frac{{{{\cos }^2}\frac{x}{2} - {{\sin }^2}\frac{x}{2}}}{{{{\cos }^2}\frac{x}{2} + {{\sin }^2}\frac{x}{2}}} = \frac{{1 - {{\tan }^2}\frac{x}{2}}}{{1 + {{\tan }^2}\frac{x}{2}}},\arctan x + \arctan \frac{1}{x} = \frac{\pi }{2}.\]
\begin{align*}A\left( {0\left| {\frac{\pi }{3},\frac{\pi }{3},\frac{\pi }{2}} \right.} \right) = &\frac{1}{8}\left[ {\frac{\pi }{3}\left( {2\pi  - \frac{\pi }{3}} \right) + \frac{\pi }{3}\left( {2\pi  - \frac{\pi }{3}} \right) - \frac{\pi }{2}\left( {2\pi  - \frac{\pi }{2}} \right)} \right]\\=& \frac{{13{\pi ^2}}}{{288}} .\end{align*}
因此\[\int_0^{\frac{\pi }{3}} {\arccos \frac{{1 - \cos x}}{{2\cos x}}dx}  = \frac{{{11\pi ^2}}}{72}.\]

\[\int_0^{\frac{\pi }{2}} {\arccos \sqrt {\frac{{\cos x}}{{1 + 2\cos x}}} dx}  = \int_0^{\frac{\pi }{2}} {\arctan \sqrt {\frac{{\cos x + 1}}{{\cos x}}} dx}  = 2A\left( { - 1\left| {\frac{\pi }{2},\frac{\pi }{2},\frac{{2\pi }}{3}} \right.} \right)\]

\begin{align*}A\left( { - 1\left| {\frac{\pi }{2},\frac{\pi }{2},\frac{{2\pi }}{3}} \right.} \right) = &\frac{1}{8}\left[ {\frac{\pi }{2}\left( {2\pi  - \frac{\pi }{2}} \right) + \frac{\pi }{2}\left( {2\pi  - \frac{\pi }{2}} \right) - \frac{{2\pi }}{3}\left( {2\pi  - \frac{{2\pi }}{3}} \right)} \right]\\&- \frac{1}{2}{\mathop{\rm Re}\nolimits} \left[ { \operatorname{Li}_2\left( { - 1} \right) - \operatorname{Li}_2\left( { - {e^{i\frac{\pi }{2}}}} \right) - \operatorname{Li}_2\left( { - {e^{i\frac{\pi }{2}}}} \right) + \operatorname{Li}_2\left( { - {e^{i\frac{{2\pi }}{3}}}} \right)} \right]\\= &\frac{{11{\pi ^2}}}{{144}} - \frac{1}{2}\left[ { - \frac{{{\pi ^2}}}{{12}} + \frac{{{\pi ^2}}}{{48}} + \frac{{{\pi ^2}}}{{48}} + \frac{{{\pi ^2}}}{{36}}} \right] = \frac{{{\pi ^2}}}{{12}}.\end{align*}
这里用到了$\operatorname{Li}_2\left( i \right) =  - \frac{{{\pi ^2}}}{{48}} + iC$, 其中$C$是Catalan constant.利用\[\operatorname{Li}_s\left( z \right) = \sum\limits_{k = 1}^\infty  {\frac{{{z^k}}}{{{k^s}}}}  = z + \frac{{{z^2}}}{{{2^s}}} + \frac{{{z^3}}}{{{3^s}}} +  \cdots \]和\[\operatorname{Li}_2\left( x \right) + \operatorname{Li}_2\left( {1 - x} \right) = \frac{1}{6}{\pi ^2} - \ln x\ln \left( {1 - x} \right),\]我们有\[{\mathop{\rm Re}\nolimits} \left\{ { \operatorname{Li}_2\left( z \right)} \right\} = \frac{1}{2}\left\{ { \operatorname{Li}_2\left( z \right) + \operatorname{Li}_2\left( {\bar z} \right)} \right\}\]以及
\begin{align*}&{\mathop{\rm Re}\nolimits} \left\{ {\operatorname{Li}_2\left( {{e^{i\frac{\pi }{3}}}} \right)} \right\} = {\mathop{\rm Re}\nolimits} \left\{ {\operatorname{Li}_2\left( {{e^{ - i\frac{{2\pi }}{3}}}} \right)} \right\} = \frac{1}{2}\left\{ { \operatorname{Li}_2\left( {{e^{i\frac{\pi }{3}}}} \right) + \operatorname{Li}_2\left( {1 - {e^{i\frac{\pi }{3}}}} \right)} \right\}\\= &\frac{1}{2}\left\{ {\frac{1}{6}{\pi ^2} - \ln {e^{i\frac{\pi }{3}}}\ln {e^{ - i\frac{\pi }{3}}}} \right\} = \frac{1}{2}\left\{ {\frac{1}{6}{\pi ^2} - \left( {i\frac{\pi }{3}} \right)\left( { - i\frac{\pi }{3}} \right)} \right\} = \frac{{{\pi ^2}}}{{36}}.\end{align*}
因此

\[\int_0^{\frac{\pi }{2}} {\arccos \sqrt {\frac{{\cos x}}{{1 + 2\cos x}}} dx}  = \frac{{{\pi ^2}}}{6}.\]

Avatar_small
Maha Board 1st Clas 说:
2023年9月20日 00:09

Maharashtra Board 1st Class Exam Date Sheet 2024 Available at Official Website www.mscepune.in, This Maha Board Primary School Exam Attended Every Year More than 50 Laks of Students, MSCE Pune Little Students Studying Maharashtra Class Revised Syllabus 2024 helps Students to Learn Logic and order and hence,Maharashtra Elementary Syllabus 2024 is Designed in Accordance with the NCERT Based Maha Board 1st Class Syllabus 2024 Guidelines and helps Students to get an Overview of the Marathi, English Medium All Subject, Students Should Perform well in the Exam, which is Possible by Understanding the Syllabus and Studying Accordingly.To Prepare well for the Maharashtra Class get Promoted to the next Standard, Understanding of the syllabus of Maharashtra State Board for each subject is essential


登录 *


loading captcha image...
(输入验证码)
or Ctrl+Enter