武汉大学2015年基础数学复试笔试试题
武汉大学2015年基础数学复试笔试试题
1.导函数极限定理, $f'(0)$存在, 而$\lim_{x\to0} f'(x)$不存在的例子.
事实上,可以考察
\[f\left( x \right) = \begin{cases}{x^2}\sin \frac{1}{x}, &x \ne 0\\0, &x = 0\end{cases}.\]
2.$\{a_n\}$是正项数列且单增.证明: $\sum_{n = 1}^\infty {\left( {\frac{{{a_{n + 1}}}}{{{a_n}}} - 1} \right)}$收敛$\Leftrightarrow$ $\{a_n\}$有界.
3.设$A$是$n$阶可逆复方阵,证明存在分解
\[A=UT,\]
其中$U$是酉矩阵,$T$是主对角线上都是正数的上三角型矩阵,并证明这种分解的唯一性。
4.讨论微分方程过点y=0的解的存在性和唯一性,其中$\alpha>0$.
\[\frac{dy}{dx}=|y|^{\alpha}.\]
5.证明含参变量积分
\[\int_{0}^{+\infty}\frac{\sin{xy}}{y(1+x)}dy\]
关于$x$在$0<\delta\leq x<+\infty$上一致收敛,在$0<x<+\infty$上非一致收敛。
6.利用数学归纳法证明$n$维空间中的$n+1$面体${B_{n + 1}}:\sum\limits_{i = 1}^n {{{\left( {{x_i}} \right)}^{1/\alpha }}} \le 1,\alpha > 0$的体积为\[V = \frac{{{2^n}{\alpha ^{n - 1}}{{\left[ {\Gamma \left( \alpha \right)} \right]}^{n - 1}}\Gamma \left( {\alpha + 1} \right)}}{{\Gamma \left( {\alpha n + 1} \right)}},\]
其中$\Gamma$为伽马函数.
2022年9月04日 19:42
MBSE HSLC Model Question Paper 2023 now available on the official website, Mizoram Board has been Announced HSLC Public Examination Time Table 2023 soon, Students can Download MBSE HSLC Previous Question Papers & Solved Question paper which is help in your study, and support in getting more marks in public exam, MBSE Model Paper MBSE HSLC Question Paper 2023 with Solutions Available Students you can Download in Pdf format form this web page below given links. HSLC Regular and Private Students Prepare their Exam from these Sample Papers, Students have to Register for Appearing in Public Exam 2023.
2023年1月26日 21:59
This is widely spread in the USA and they do have stores for grocery, fuel, and Pharmacy. The locate me icon on the official website does help you find any of the stores or fuel centers in a quick way. Safeway Near Me The shopping becomes easy, as they bring all vaults of products with multiple brands. The associates in Safe Way stores well prepared to support the customer’s during their shopping.
2023年3月10日 23:00
敬啟者:個人小網站希望大家多多支持 感謝您對我們熱心的支持 f88tw|華歌爾|I appreciate your kind assistance.
https://mypaper.pchome.com.tw/f88tw
f88tw|修墳|修墓|新竹|桃園|苗栗|撿骨|拾骨|發票
https://mypaper.pchome.com.tw/f88tw/post/1370781143
https://mypaper.m.pchome.com.tw/f88tw/post/1370781143