中科院数学系统院高校招生考试试题
1 浙大考题
中国科学院大学
2016 年高校招生考试:数学(甲卷)
满分100分,考试时间120分钟
1. (15分)求∫+∞0e−ax−e−bxxdx(b>a).
2. (15分) ∑ni=1an发散, an为正项级数.求证:
(1) ∑∞i=1anSn发散;
(2) ∑∞i=1an+1Sn发散.
3. (15分) 求
∫x2+y2+z2=R2dS√x2+y2+(z−h)2.
4. (15分) 设A:V→V,HA,α(t)={φ(t)|φ(x)∈Q[t],φ(x)⋅α=0}中次数最小的一个.证: ∃α∈V,使HA,α(t)为A的极小多项式.
1.1 某同学面试问题
1. 求∫+∞−∞1(1+x2)(1+x6)dx.
2. 举一个无穷次可导却不解析的函数.
2 湖南大学考题
中国科学院大学
2016 年高校招生考试:数学(乙卷)
满分100分,考试时间120分钟
1. (15分)
(1) 求极限lim;
(2) 设f(x)满足f\left( x \right) + 2f\left( {\frac{1}{x}} \right) = \frac{3}{x},求f(x)的导数;
(3) 求\mathop {\lim }_{n \to \infty } \sqrt[n]{{\frac{{{n^n}}}{{n!}}}}.
2. (15分)设r\geq 0,求积分\frac{1}{{2\pi }}\int_0^{2\pi } {\log \left( {1 - 2r\cos x + {r^2}} \right)dx} .
3. (10分)设0<\mu <1,a>0, M_n是e^{-(x+ax^\mu )x^n}在(0,+\infty)上的最大值.求\mathop {\lim }\limits_{n \to \infty } {\left( {\frac{{{M_n}}}{{n!}}} \right)^{{n^{ - \mu }}}}.
4. (10分)设函数f(x)在闭区间[a,b]上二次连续可微,并且f(a)=f(b)=0.证明不等式:
{M^2} \le \frac{{{{\left( {b - a} \right)}^3}}}{2}\int_a^b {{{\left| {f''\left( x \right)} \right|}^2}dx} ,其中M=\sup_{a\leq x\leq b}|f(x)|.
5. (10分)设A = \left( {\begin{array}{*{20}{c}}4&0\\0&1\end{array}} \right),B = \left( {\begin{array}{*{20}{c}}{\cos \theta }&{ - \sin \theta }\\{\sin \theta }&{\cos \theta }\end{array}} \right)\left( {\begin{array}{*{20}{c}}3&0\\0&{ - 2}\end{array}} \right){\left( {\begin{array}{*{20}{c}}{\cos \theta }&{ - \sin \theta }\\{\sin \theta }&{\cos \theta }\end{array}} \right)^{ - 1}},求以下矩阵的特征根:
A + B,A \otimes \left( {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right) + \left( {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right) \otimes B,A \otimes B.
注:对A = \left( {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}\\{{a_{21}}}&{{a_{22}}}\end{array}} \right),B = \left( {\begin{array}{*{20}{c}}{{b_{11}}}&{{b_{12}}}\\{{b_{21}}}&{{b_{22}}}\end{array}} \right),张量积定义为A \otimes B = \left( {\begin{array}{*{20}{c}}{{a_{11}}B}&{{a_{12}}B}\\{{a_{21}}B}&{{a_{22}}B}\end{array}} \right).
6. (10分)证明以下矩阵组成的集合是实数域上的线性空间,求其维数及一组基,并证明行列式\det X是二次型,写出其对应的双线性型.
M = \left\{ {X = \left( {\begin{array}{*{20}{c}}{{x_0} + {x_3}}&{{x_1} - i{x_2}}\\{{x_1} + i{x_2}}&{{x_0} - {x_3}}\end{array}} \right):{x_0},{x_1},{x_2},{x_3} \in \mathbb{R} } \right\}.
7. (20分)设可逆矩阵A\in M_n(\mathbb C)的特征值为\lambda_1,\cdots,\lambda_n.求线性变换
M_n(\mathbb C)\to M_n(\mathbb C),\quad X\mapsto AXA'
的全部特征值.
注:M_n(\mathbb C)表示定义在复数域\mathbb C上的n阶方阵.
3 西安交大考题
中国科学院大学
2016 年高校招生考试:数学(乙卷)
满分100分,考试时间120分钟
1. (15分)
(1) 求极限\mathop {\lim }_{x \to - \infty } \left( {\sqrt {\left( {x + a} \right)\left( {x + b} \right)} + x} \right);
(2) 设f(x)满足f\left( x \right) + 2f\left( {\frac{1}{x}} \right) = \frac{3}{x},求f(x)的导数;
(3) 设f:[0,1]\to R连续,求\mathop {\lim }_{n \to \infty } \int_0^1 {\int_0^1 \cdots } \int_0^1 {f\left( {\frac{{{x_1} \cdots {x_n}}}{n}} \right)d{x_1}d{x_2} \cdots d{x_n}} .
解法一.设|f|最大值为M.对任何\varepsilon>0,存在\delta>0,使得当|x-1/2|<\delta时,有\left|f(x)-f(\frac{1}{2})\right|<\varepsilon.
\begin{align*}&\int_{[0,1]^n}\left| f\left(\frac{x_1+x_2+\cdots+x_n}{n}\right)-f(\frac{1}{2})\right|dx_1dx_2\cdots dx_n\\\leq &\int_{\left|\frac{x_1+x_2+\cdots+x_n}{n}-\frac{1}{2}\right|\geq\delta}\left| f\left(\frac{x_1+x_2+\cdots+x_n}{n}\right)-f(\frac{1}{2})\right|dx_1dx_2\cdots dx_n\\+&\int_{\left|\frac{x_1+x_2+\cdots+x_n}{n}-\frac{1}{2}\right|<\delta}\left| f\left(\frac{x_1+x_2+\cdots+x_n}{n}\right)-f(\frac{1}{2})\right|dx_1dx_2\cdots dx_n\\\leq&2M\int_{\left|\frac{x_1+x_2+\cdots+x_n}{n}-\frac{1}{2}\right|\geq\delta}dx_1dx_2\cdots dx_n+\varepsilon\\\leq&\frac{2M}{\delta^2}\int_{\left|\frac{x_1+x_2+\cdots+x_n}{n}-\frac{1}{2}\right|\geq\delta}\left|\frac{x_1+x_2+\cdots+x_n}{n}-\frac{1}{2}\right|^2dx_1dx_2\cdots dx_n+\varepsilon\\\leq&\frac{2M}{\delta^2}\int_{[0,1]^n}\left|\frac{x_1+x_2+\cdots+x_n}{n}-\frac{1}{2}\right|^2dx_1dx_2\cdots dx_n+\varepsilon\\=&\frac{M}{6n\delta^2}+\varepsilon.\end{align*}
因此\limsup_{n\rightarrow\infty}\int_{[0,1]^n}\left| f\left(\frac{x_1+x_2+\cdots+x_n}{n}\right)-f(\frac{1}{2})\right|dx_1dx_2\cdots dx_n\leq \varepsilon.
令\varepsilon\rightarrow0即可.
解法二.由科尔莫格罗夫强大数定律得\frac{{{X_1} + {X_2} + \cdots + {X_n}}}{n}\mathop \to \limits^{a.s.} E\left( {{X_i}} \right) = \frac{1}{2}\left( {n \to + \infty } \right).
又因为f(x)连续有界,由控制收敛定理可知
\mathop {\lim }\limits_{n \to \infty } E\left( {f\left( {\frac{{{X_1} + {X_2} + \cdots + {X_n}}}{n}} \right)} \right) = E\left( {\mathop {\lim }\limits_{n \to \infty } f\left( {\frac{{{X_1} + {X_2} + \cdots + {X_n}}}{n}} \right)} \right) = E\left( {f\left( {\mathop {\lim }\limits_{n \to \infty } \frac{{{X_1} + {X_2} + \cdots + {X_n}}}{n}} \right)} \right) = f\left( {\frac{1}{2}} \right).
2. (15分)设r\geq 0,求积分\frac{1}{{2\pi }}\int_0^{2\pi } {\log \left( {1 - 2r\cos x + {r^2}} \right)dx} .
3. (20分)设0<\mu <1,a>0, M_n是e^{-(x+ax^\mu )x^n}在(0,+\infty)上的最大值.求\mathop {\lim }\limits_{n \to \infty } {\left( {\frac{{{M_n}}}{{n!}}} \right)^{{n^{ - \mu }}}}.
4. (10分)设m为正整数,方程a\equiv b \mod m定义为m能整除a-b.当m取何值时,以下线性方程组有整数解?
\left\{ \begin{array}{l}x + 2y - z \equiv 1\left( {\bmod m} \right),\\2x - 3y + z \equiv 4\left( {\bmod m} \right),\\4x + y - z \equiv 9\left( {\bmod m} \right).\end{array} \right.
5. (10分)设A = \left( {\begin{array}{*{20}{c}}4&0\\0&1\end{array}} \right),B = \left( {\begin{array}{*{20}{c}}{\cos \theta }&{ - \sin \theta }\\{\sin \theta }&{\cos \theta }\end{array}} \right)\left( {\begin{array}{*{20}{c}}3&0\\0&{ - 2}\end{array}} \right){\left( {\begin{array}{*{20}{c}}{\cos \theta }&{ - \sin \theta }\\{\sin \theta }&{\cos \theta }\end{array}} \right)^{ - 1}},求以下矩阵的特征根: A + B,A \otimes \left( {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right) + \left( {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right) \otimes B,A \otimes B.
注:对A = \left( {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}\\{{a_{21}}}&{{a_{22}}}\end{array}} \right),B = \left( {\begin{array}{*{20}{c}}{{b_{11}}}&{{b_{12}}}\\{{b_{21}}}&{{b_{22}}}\end{array}} \right),张量积定义为A \otimes B = \left( {\begin{array}{*{20}{c}}{{a_{11}}B}&{{a_{12}}B}\\{{a_{21}}B}&{{a_{22}}B}\end{array}} \right).
6. (10分)证明以下矩阵组成的集合是实数域上的线性空间,求其维数及一组基,并证明行列式\det X是二次型,写出其对应的双线性型.
M = \left\{ {X = \left( {\begin{array}{*{20}{c}}{{x_0} + {x_3}}&{{x_1} - i{x_2}}\\{{x_1} + i{x_2}}&{{x_0} - {x_3}}\end{array}} \right):{x_0},{x_1},{x_2},{x_3} \in \mathbb{R} } \right\}.
7. (20分)设\Omega为含有n个元素的有限集合, 2^\Omega为\Omega的幂集(即\Omega的所有子集构成的集合).对任意A,B\in 2^\Omega,定义数乘0A=\emptyset(空集), 1A=A,加法A+B=(A\cup B)\backslash (A\cap B)(对称差).
(1) 证明2^\Omega关于以上数乘及加法为域Z_2=\{0,1\} (注意在此域上1+1=0)上的线性空间,求其维数.
(2) 求2^\Omega的一维子空间个数.
(3) 取定非空X\in 2^\Omega,定义线性算子T_X:2^\Omega\mapsto 2^\Omega为T_X A=A\cap X,A\in 2^\Omega.求T_X的极小多项式,特征多项式,特征值和相应的特征子空间.
4 吉大考题
中国科学院大学
2016 年高校招生考试:数学(丙卷)
满分100分,考试时间120分钟
1. (15分)计算
(1) 求极限\mathop {\lim }_{n \to \infty } \frac{{{1^{\alpha - 1}} + \cdots + {n^{\alpha - 1}}}}{{{n^\alpha }}} \quad {\alpha > 0} .
(2) 已知f'(a)存在,f(a)\neq0,求\mathop {\lim }_{n \to \infty } {\left( {\frac{{f\left( {a + \frac{1}{n}} \right)}}{{f\left( a \right)}}} \right)^n}.
(3) 设f:[0,1]\to \mathbb R连续,求\mathop {\lim }\limits_{n \to \infty } \int_0^1 {\int_0^1 \cdots } \int_0^1 {f\left( {{{\left( {{x_1} \cdots {x_n}} \right)}^{1/n}}} \right)d{x_1}d{x_2} \cdots d{x_n}} .
2. (15分)设\phi (x)>0,f(x)>0都是[a,b]上连续函数,求\mathop {\lim }\limits_{n \to \infty } \sqrt[n]{{\int_a^b {\phi \left( x \right){{\left( {f\left( x \right)} \right)}^n}dx} }}.
3. (20分)证明\binom n1 - \frac{1}{2}\binom n2 + \frac{1}{3} \binom n3 - \cdots + (-1)^{n-1}\frac1n\binom nn = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}.
4. (10分)设x,y都是复数域上n阶方阵,定义x^{(0)}=x,x^{(1)}=[x,y]\equiv xy-yx,x^{(j)}=[x^{(j-1)},y].证明
\sum\limits_{i = 0}^k {{y^i}x{y^{k - i}}} = \sum\limits_{j = 0}^k {\binom{k + 1}{j + 1} {y^{k - j}}{x^{\left( j \right)}}} .
5. (10分)给出平面中以下三条不同直线相交于一点的条件
ax+by+c=0,\quad bx+cy+a=0,\quad cx+ay+b=0.
求以下矩阵能对角化的条件:
\left( {\begin{array}{*{20}{c}}0&1&0\\0&0&1\\a&b&c\end{array}} \right).
6. (10分) 给出M_2(\mathbb C)中幂零矩阵所张成的线性空间的一组基.描述M_n(\mathbb C)中幂零矩阵所张成的线性空间.
7. (20分)证明\cos x是超越函数.
注:函数f(x)称为超越函数,如果不存在有限多个不全为零的a_{pq},p,q=0,1,2,\cdots,使得
\sum\limits_{p,q}a_{pq} x^p (f(x))^q=0,\quad \forall x\in \mathbb R.
5 大连理工考题
中国科学院大学
2016 年高校招生考试:数学(丁卷)
满分100分,考试时间120分钟
1. (15分)计算
(1) 求{\sqrt 2 ^{{{\sqrt 2 }^{{{\sqrt 2 }^ \cdots }}}}};
(2) 求\mathop {\lim }\limits_{n \to \infty } \sqrt[n]{{\frac{{{n^n}}}{{n!}}}};
(3) 求不定积分\int {\frac{{x\ln x}}{{{{\left( {1 + {x^2}} \right)}^2}}}dx}.
2. (15分)设\phi (x)>0,f(x)>0都是[a,b]上连续函数,求
\mathop {\lim }\limits_{n \to \infty } \frac{{\int_a^b {\phi \left( x \right){{\left( {f\left( x \right)} \right)}^{n + 1}}dx} }}{{\int_a^b {\phi \left( x \right){{\left( {f\left( x \right)} \right)}^n}dx} }}.
3. (20分) 设f(x)为[a,b]上可微函数, f(a)=f(b)=0,但f(x)不恒等于零,则存在\xi\in (a,b)使得
\left| {f'\left( \xi \right)} \right| > \frac{4}{{{{\left( {b - a} \right)}^2}}}\int_a^b {f\left( x \right)dx} .
4. (10分)设m为正整数,方程a\equiv b \mod m定义为m能整除a-b.当m取何值时,以下线性方程组有整数解?
\left\{ \begin{array}{l}x \equiv 1\left( {\bmod \,2} \right),\\x \equiv 2\left( {\bmod \,3} \right),\\x\equiv 4\left( {\bmod \,5} \right).\end{array} \right.
5. (10分)证明代数数集合为可数集.
注:一个数称为代数数,如果它是某个系数为有理数的多项式的根.
6. (10分)设n\geq2,矩阵A=(a_{ij})\in M_{n\times n}(\mathbb Z)的每个元素要么是-3,要么是4,即a_{ij}\in \{-3,4\}. (1)设S是所有这些矩阵的和,求S及其秩\mathrm{rank}\, S; (2)证明行列式|A^2|是7^{2n-2}的倍数,即7^{2n-2} |\, |A^2|.
7. (20分)设A = \left( {\begin{array}{*{20}{c}}a&1&0\\0&a&1\\0&0&a\end{array}} \right)\in M_{3\times 3}(\mathbb C),多项式p(x)\in \mathbb C[x].
(1)证明: p\left( A \right) = \left( {\begin{array}{*{20}{c}}{p\left( a \right)}&{p'\left( a \right)}&{p''\left( a \right)/2}\\0&{p\left( a \right)}&{p'\left( a \right)}\\0&0&{p\left( a \right)}\end{array}} \right). \quad (2)求e^A.
6 中科大考题
证明AB和BA有相同的特征多项式.
7 山大考题
中国科学院大学
2016 年高校招生考试:数学(X卷)
满分100分,考试时间120分钟
1. (15分)计算
(1) 求\mathop {\lim }_{x \to 0} \frac{{\sqrt {1 + \tan x} - \sqrt {1 + \sin x} }}{{{x^3}}};
(2) 求f(x)=x^{x^x}的导数;
(3) 求\mathop {\lim }\limits_{n \to \infty } \int_0^1 {\int_0^1 \cdots } \int_0^1 {\frac{{x_1^2 + x_1^2 + \cdots + x_n^2}}{{{x_1} + {x_2} + \cdots + {x_n}}}d{x_1}d{x_2}d{x_n}} .
2. (15分)已知f\left( x \right) = \prod_{i = 1}^k {\left( {x - {a_i}} \right)} ,且 - \frac{{f'\left( x \right)}}{{f\left( x \right)}} = {c_0} + {c_1}x + {c_2}{x^2} + \cdots + {c_n}{x^n} + \cdots ,求\mathop {\lim }\limits_{n \to \infty } \frac{{{c_n}}}{{{c_{n - 1}}}}和\mathop {\lim }\limits_{n \to \infty } \sqrt[n]{{{c_n}}}.
3. (20分) a,b为实数, x^3+abx+b在复数域上有重根,则a,b应满足什么条件?
4. (10分)求{\left( {\begin{array}{*{20}{c}}{{e^{i\theta }}}&{2i\sin \alpha }\\0&{{e^{i\theta }}}\end{array}} \right)^n}.
8 厦大考题
1. A,B特征值不同, f_A,f_B为其特征多项式.
(1) 存在g(\lambda),h(\lambda)使得g(B)f_A(B)=I,h(A)g_B(A)=I.
(2) AX-XB=0只有零解;
(3) AX-XB=C有唯一解.
2. 设f(x)=\frac1{1-x-x^2},证明\sum_{n=1}^\infty\frac{n!}{f^{(n)}(0)}收敛,其中f^{(n)}(0)表示f(x)在0点的n阶导数.
2022年8月06日 20:28
New India Assurance corporation limited does offer insurance plans for vehicles which include commercial vehicles and private vehicles. The insurance policy does protect them from third-party liabilities and unwanted expenses which might arise through accidental damage or due to any kind of loss to the vehicle. New India Assurance Renewal Having proper insurance will cover your entire vehicle damage as per their insured value, as well having regular insurance will help you have good value as it gets changed every year with a calculated percentage.
2022年9月06日 04:17
Mizoram Board HSLC Previous Question Paper 2023 are very important for the Preparation of Public Exam of MBSE for the Students. HSLC Students of can easily get their Latest and most valuable Mock Test Paper from this website. MBSE Question Paper Students only have to Download the Meghalaya Board HSLC Mock Test Paper 2023 for all the important subjects are available Including the English, Mathematics, Social studies, Hindi, Urdu etc. Mizoram Board HSLC Model Paper 2023 has announced State Governmental Board of Education.