二重积分计算 - Eufisky - The lost book
误差函数Erf专题
与双重对数函数有关的积分

二重积分计算

Eufisky posted @ 2017年7月11日 03:21 in 数学分析 with tags 积分计算 多元 , 1393 阅读
求$$\iint_D \sin x\sin y(\sin x+\sin y)e^{\sin x\sin y}d\sigma,$$其中$D:0<x<\pi/2,0<y<\pi/2$.

解.首先把待求积分写成

\begin{align*}&\int_0^{\frac{\pi}{2}}{\int_0^{\frac{\pi}{2}}{\sin x\sin y\left( \sin x+\sin y \right) \text{e}^{\sin x\sin y}\text{d}x\text{d}y}}\\=&2\int_0^{\frac{\pi}{2}}{\int_0^{\frac{\pi}{2}}{\sin ^2x\sin y\text{e}^{\sin x\sin y}\text{d}x\text{d}y}}\\=&2\int_0^{\frac{\pi}{2}}{\int_0^{\frac{\pi}{2}}{\sin ^2x\cos y\text{e}^{\sin x\cos y}\text{d}x\text{d}y}}\\=&2\iint_S{x\text{e}^x\text{d}x\text{d}y},\end{align*}
其曲面$S$是单位球面在第一象限的部分.
考虑到平面$x=0$处距离为$x$的宽度为$\mathrm{d}x$的球面窄条的面积,相当于是底边长为$y=\sqrt{1-x^2}$,宽为$\mathrm{d}s=\sqrt{1+\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2}\mathrm{d}x=\frac{\mathrm{d}x}{\sqrt{1-x^2}}$,
因此
$$I=2\int_0^1{x\text{e}^x\frac{\pi}{2}\sqrt{1-x^2}\frac{\text{d}x}{\sqrt{1-x^2}}}=\pi \int_0^1{x\text{e}^x\text{d}x}=\pi.$$
解法二.利用分部积分及对称性可知
\begin{align*}&\iint_D{\sin x\sin y\left( \sin x+\sin y \right) e^{\sin x\sin y}d\sigma}\\=&2\int_0^{\frac{\pi}{2}}{\int_0^{\frac{\pi}{2}}{\sin ^2x\sin ye^{\sin x\sin y}dxdy}}=2\int_0^{\frac{\pi}{2}}{\int_0^{\frac{\pi}{2}}{\left( 1-\cos ^2x \right) \sin ye^{\sin x\sin y}dxdy}}\\=&2\int_0^{\frac{\pi}{2}}{\int_0^{\frac{\pi}{2}}{\sin ye^{\sin x\sin y}dxdy}}-2\int_0^{\frac{\pi}{2}}{\int_0^{\frac{\pi}{2}}{\cos x\frac{\partial e^{\sin x\sin y}}{\partial x}dxdy}}\\=&2\int_0^{\frac{\pi}{2}}{\int_0^{\frac{\pi}{2}}{\sin ye^{\sin x\sin y}dxdy}}-2\int_0^{\frac{\pi}{2}}{\left[ \cos x\left. e^{\sin x\sin y} \right|_{0}^{\pi /2}-\left( \int_0^{\frac{\pi}{2}}{\left( -\sin x \right) e^{\sin x\sin y}dx} \right) \right] dy}\\=&2\int_0^{\frac{\pi}{2}}{\int_0^{\frac{\pi}{2}}{\sin ye^{\sin x\sin y}dxdy}}-2\int_0^{\frac{\pi}{2}}{\left( -1 \right) dy}-2\int_0^{\frac{\pi}{2}}{\int_0^{\frac{\pi}{2}}{\sin xe^{\sin x\sin y}dxdy}}\\=&\pi .\end{align*}

 

Avatar_small
Uttarakhand Board Mo 说:
2022年9月16日 20:59

UK Board Model Paper 2023 Class 7 Pdf Download Uttarakhand School Education Board Term1 & Term2 Exam Solved Question Bank for SCERT & NCERT Syllabus Hindi Medium, English Medium & Urdu Medium Students at Uttarakhand Board Model Paper Class 7 Uttarakhand Board of School Education (UBSE) Subject experts have designed and suggested Sample Paper for all High School Level Class 7th Standard Students to know the new exam scheme or question pattern of Term1 & Term2 exams.


登录 *


loading captcha image...
(输入验证码)
or Ctrl+Enter