二重积分计算
求$$\iint_D \sin x\sin y(\sin x+\sin y)e^{\sin x\sin y}d\sigma,$$其中$D:0<x<\pi/2,0<y<\pi/2$.
解.首先把待求积分写成
\begin{align*}&\int_0^{\frac{\pi}{2}}{\int_0^{\frac{\pi}{2}}{\sin x\sin y\left( \sin x+\sin y \right) \text{e}^{\sin x\sin y}\text{d}x\text{d}y}}\\=&2\int_0^{\frac{\pi}{2}}{\int_0^{\frac{\pi}{2}}{\sin ^2x\sin y\text{e}^{\sin x\sin y}\text{d}x\text{d}y}}\\=&2\int_0^{\frac{\pi}{2}}{\int_0^{\frac{\pi}{2}}{\sin ^2x\cos y\text{e}^{\sin x\cos y}\text{d}x\text{d}y}}\\=&2\iint_S{x\text{e}^x\text{d}x\text{d}y},\end{align*}
其曲面$S$是单位球面在第一象限的部分.
考虑到平面$x=0$处距离为$x$的宽度为$\mathrm{d}x$的球面窄条的面积,相当于是底边长为$y=\sqrt{1-x^2}$,宽为$\mathrm{d}s=\sqrt{1+\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2}\mathrm{d}x=\frac{\mathrm{d}x}{\sqrt{1-x^2}}$,
因此
$$I=2\int_0^1{x\text{e}^x\frac{\pi}{2}\sqrt{1-x^2}\frac{\text{d}x}{\sqrt{1-x^2}}}=\pi \int_0^1{x\text{e}^x\text{d}x}=\pi.$$
解法二.利用分部积分及对称性可知
\begin{align*}&\iint_D{\sin x\sin y\left( \sin x+\sin y \right) e^{\sin x\sin y}d\sigma}\\=&2\int_0^{\frac{\pi}{2}}{\int_0^{\frac{\pi}{2}}{\sin ^2x\sin ye^{\sin x\sin y}dxdy}}=2\int_0^{\frac{\pi}{2}}{\int_0^{\frac{\pi}{2}}{\left( 1-\cos ^2x \right) \sin ye^{\sin x\sin y}dxdy}}\\=&2\int_0^{\frac{\pi}{2}}{\int_0^{\frac{\pi}{2}}{\sin ye^{\sin x\sin y}dxdy}}-2\int_0^{\frac{\pi}{2}}{\int_0^{\frac{\pi}{2}}{\cos x\frac{\partial e^{\sin x\sin y}}{\partial x}dxdy}}\\=&2\int_0^{\frac{\pi}{2}}{\int_0^{\frac{\pi}{2}}{\sin ye^{\sin x\sin y}dxdy}}-2\int_0^{\frac{\pi}{2}}{\left[ \cos x\left. e^{\sin x\sin y} \right|_{0}^{\pi /2}-\left( \int_0^{\frac{\pi}{2}}{\left( -\sin x \right) e^{\sin x\sin y}dx} \right) \right] dy}\\=&2\int_0^{\frac{\pi}{2}}{\int_0^{\frac{\pi}{2}}{\sin ye^{\sin x\sin y}dxdy}}-2\int_0^{\frac{\pi}{2}}{\left( -1 \right) dy}-2\int_0^{\frac{\pi}{2}}{\int_0^{\frac{\pi}{2}}{\sin xe^{\sin x\sin y}dxdy}}\\=&\pi .\end{align*}
2022年9月16日 20:59
UK Board Model Paper 2023 Class 7 Pdf Download Uttarakhand School Education Board Term1 & Term2 Exam Solved Question Bank for SCERT & NCERT Syllabus Hindi Medium, English Medium & Urdu Medium Students at Uttarakhand Board Model Paper Class 7 Uttarakhand Board of School Education (UBSE) Subject experts have designed and suggested Sample Paper for all High School Level Class 7th Standard Students to know the new exam scheme or question pattern of Term1 & Term2 exams.