与双重对数函数有关的积分 - Eufisky - The lost book
二重积分计算
几个重要定理

与双重对数函数有关的积分

Eufisky posted @ 2017年8月03日 16:02 in 数学分析 with tags 积分计算 , 1472 阅读

这里

求$$\int_0^{\frac{\pi}{2}}{\frac{x^2}{1+\cos ^2x}dx}.$$


对于$|b|<a$,注意到

\begin{align*}\frac{a^2-b^2}{a^2-2ab\cos x+b^2}&=\frac{a}{a-e^{ix}b}+\frac{be^{-ix}}{a-e^{-ix}b}\\&=\sum_{n=0}^\infty \left(\frac{b}{a}\right)^ne^{inx}+\frac{be^{-ix}}{a}\sum_{n=0}^\infty\left(\frac{b}{a}\right)^ne^{-inx}\\&=1+\sum_{n=1}^\infty \left(\frac{b}{a}\right)^ne^{inx}+ \sum_{n=1}^{\infty}\left(\frac{b}{a}\right)^{n}e^{-inx}\\&=1+2\sum_{n=1}^\infty \left(\frac{b}{a}\right)^n\cos(n x),\end{align*}
因此
\begin{equation*}1+2\sum_{n=1}^\infty \left(\frac{b}{a}\right)^n\cos(n x)=\frac{a^2-b^2}{a^2+b^2-2ab\cos x},\qquad\qquad\mbox{对于}\, |b|<a.\end{equation*}

令$a=\frac{2+\sqrt{2}}{2}$和$b=\frac{-2+\sqrt{2}}{2}$,我们有

\begin{align*}1+2\sum_{n=1}^\infty \left(2\sqrt{2}-3\right)^n\cos(n x)=\frac{2\sqrt{2}}{3+\cos x}.\end{align*}
由$\displaystyle\int_0^{\pi}{x^2\cos \left( nx \right) dx}=2\pi \frac{\cos \left( \pi n \right)}{n^2}$可知
\begin{align*}I&=\int_0^{\frac{\pi}{2}}{\frac{x^2}{1+\cos ^2x}dx}=\int_0^{\frac{\pi}{2}}{\frac{x^2}{1+\frac{\cos 2x+1}{2}}dx}\\&=\int_0^{\frac{\pi}{2}}{\frac{2x^2}{3+\cos 2x}dx}=\frac{1}{4}\int_0^{\pi}{\frac{x^2}{3+\cos x}dx}\\&=\frac{1}{8\sqrt{2}}\int_0^{\pi}{x^2\left[ 1+2\sum_{n=1}^{\infty}{\left( 2\sqrt{2}-3 \right) ^n\cos \left( nx \right)} \right] dx}\\&=\frac{1}{8\sqrt{2}}\left[ \frac{\pi ^3}{3}+2\sum_{n=1}^{\infty}{\left( 2\sqrt{2}-3 \right) ^n\int_0^{\pi}{x^2\cos \left( nx \right) dx}} \right]\\&=\frac{\sqrt{2}}{48}\pi ^3+\frac{\sqrt{2}}{4}\pi \sum_{n=1}^{\infty}{\frac{\left( 2\sqrt{2}-3 \right) ^n\cos \left( \pi n \right)}{n^2}}\\&=\frac{\sqrt{2}}{48}\pi ^3+\frac{\sqrt{2}}{4}\pi \sum_{n=1}^{\infty}{\frac{\left( 3-2\sqrt{2} \right) ^n}{n^2}}\\&=\frac{\sqrt{2}}{48}\pi ^3+\frac{\sqrt{2}}{4}\pi \mathrm{Li}_2\left( 3-2\sqrt{2} \right).\end{align*}

求$$\int_0^{\pi}{\frac{x^2}{1+\sin ^2x}dx}.$$


令$t=x-\frac\pi2$,我们有

\begin{align*}J&=\int_0^{\pi}{\frac{x^2}{1+\sin ^2x}dx}=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}{\frac{\left( t+\frac{\pi}{2} \right) ^2}{1+\cos ^2t}dt}\\&=2\int_0^{\frac{\pi}{2}}{\frac{t^2}{1+\cos ^2t}dt}+\frac{\pi ^2}{2}\int_0^{\frac{\pi}{2}}{\frac{1}{1+\cos ^2t}dt}\\&=2\int_0^{\frac{\pi}{2}}{\frac{t^2}{1+\cos ^2t}dt}+\frac{\pi ^2}{2}\int_0^{\frac{\pi}{2}}{\frac{1}{\sin ^2t+2\cos ^2t}dt}\\&=2\int_0^{\frac{\pi}{2}}{\frac{t^2}{1+\cos ^2t}dt}+\frac{\pi ^2}{2}\int_0^{\frac{\pi}{2}}{\frac{1}{\tan ^2t+2}d\left( \tan t \right)}\\&=\frac{\sqrt{2}}{24}\pi ^3+\frac{\sqrt{2}}{2}\pi \mathrm{Li}_2\left( 3-2\sqrt{2} \right) +\frac{\sqrt{2}}{8}\pi ^3\\&=\frac{\sqrt{2}}{2}\pi \mathrm{Li}_2\left( 3-2\sqrt{2} \right) +\frac{\sqrt{2}}{6}\pi ^3.\end{align*}

求$$\int_0^1{\int_0^1{\int_0^1{\int_0^1{\frac{\left( 1-x^2y^2z^2t^2 \right) dxdydzdt}{\sqrt{\left( 1-x^2 \right) \left( 1-y^2 \right) \left( 1-z^2 \right) \left( 1-t^2 \right) \left( 1+x^2y^2z^2t^2 \right)}}}}}}.$$

解.原积分等于$$I=\int_0^{\frac{\pi}{2}}{\int_0^{\frac{\pi}{2}}{\int_0^{\frac{\pi}{2}}{\int_0^{\frac{\pi}{2}}{\frac{1-\cos ^2\alpha \cos ^2\beta \cos ^2\theta \cos ^2\gamma}{\sqrt{1+\cos ^2\alpha \cos ^2\beta \cos ^2\theta \cos ^2\gamma}}d\alpha d\beta d\theta d\gamma}}}}.$$

由于$$\frac{1}{\sqrt{1+x}}=\sum_{n=0}^{\infty}{\binom{-1/2}{n}x^n}=1+\sum_{n=1}^{\infty}{\frac{\left( -1 \right) ^n\left( 2n-1 \right) !!}{2^nn!}x^n},$$

因此

\begin{align*}\frac{1-x^2}{\sqrt{1+x^2}}&=\left( 1-x^2 \right) \left( 1+\sum_{n=1}^{\infty}{\frac{\left( -1 \right) ^n\left( 2n-1 \right) !!}{2^nn!}x^{2n}} \right) \\&=1+\sum_{n=1}^{\infty}{\frac{\left( -1 \right) ^n\left( 2n-1 \right) !!}{2^nn!}x^{2n}}-x^2-\sum_{n=1}^{\infty}{\frac{\left( -1 \right) ^n\left( 2n-1 \right) !!}{2^nn!}x^{2n+2}}\\&=1-x^2+\sum_{n=1}^{\infty}{\frac{\left( -1 \right) ^n\left( 2n-1 \right) !!}{2^nn!}x^{2n}}-\sum_{n=2}^{\infty}{\frac{\left( -1 \right) ^{n-1}\left( 2n-3 \right) !!}{2^{n-1}\left( n-1 \right) !}x^{2n}}\\&=1-x^2-\frac{x^2}{2}+\sum_{n=2}^{\infty}{\frac{\left( -1 \right) ^n\left( 2n-3 \right) !!}{2^nn!}\left( 2n-1+2n \right) x^{2n}}\\&=1-\frac{3x^2}{2}+\sum_{n=2}^{\infty}{\frac{\left( -1 \right) ^n\left( 2n-3 \right) !!}{2^nn!}\left( 4n-1 \right) x^{2n}}.\end{align*}

由于$$\int_0^{\frac{\pi}{2}}{\cos ^{2n}xdx}=\frac{\sqrt{\pi}\Gamma \left( n+\frac{1}{2} \right)}{2\Gamma \left( n+1 \right)}=\frac{\sqrt{\pi}}{2n!}\cdot \frac{\left( 2n-1 \right) !!}{2^n}\sqrt{\pi}=\frac{\pi}{2}\frac{\left( 2n-1 \right) !!}{\left( 2n \right) !!},$$我们有

\begin{align*}I&=\frac{\pi ^4}{16}-\frac{3}{2}\left( \frac{\pi}{4} \right) ^4+\sum_{n=2}^{\infty}{\frac{\left( -1 \right) ^n\left( 2n-3 \right) !!}{2^nn!}\left( 4n-1 \right) \left[ \frac{\pi}{2}\frac{\left( 2n-1 \right) !!}{\left( 2n \right) !!} \right] ^4}\\&=\frac{\pi ^4}{16}-\frac{3}{2}\left( \frac{\pi}{4} \right) ^4+\frac{\pi ^4}{16}\sum_{n=2}^{\infty}{\left( -1 \right) ^n\frac{4n-1}{2n-1}\left[ \frac{\left( 2n-1 \right) !!}{\left( 2n \right) !!} \right] ^5}\\&=\frac{\pi ^4}{16}+\frac{\pi ^4}{16}\sum_{n=1}^{\infty}{\left( -1 \right) ^n\frac{4n-1}{2n-1}\left[ \frac{\left( 2n-1 \right) !!}{\left( 2n \right) !!} \right] ^5}.\end{align*}
\begin{align*}\sum_{n=1}^{\infty}{\left( -1 \right) ^n\frac{4n-1}{2n-1}\left[ \frac{\left( 2n-1 \right) !!}{\left( 2n \right) !!} \right] ^5}=& _5F_4\left( -\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2};1,1,1,1;-1 \right) \\&-\frac{1}{8}\,_5F_4\left( \frac{1}{2},\frac{3}{2},\frac{3}{2},\frac{3}{2},\frac{3}{2};2,2,2,2;-1 \right) -1\end{align*}
可知
$$I=\frac{\pi ^4}{16}\left[ _5F_4\left( -\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2};1,1,1,1;-1 \right) -\frac{1}{8}\,_5F_4\left( \frac{1}{2},\frac{3}{2},\frac{3}{2},\frac{3}{2},\frac{3}{2};2,2,2,2;-1 \right) \right] ,$$
其中$_pF_q(a_1,\ldots,a_p;b_1,\ldots,b_q;z)$为Generalized Hypergeometric Function.

计算积分
$$\int_0^{\pi}{\sqrt{\tan \frac{\theta}{2}}\ln^2 \left( \sin \theta \right) \text{d}\theta}.$$
\large{\textbf{\textcolor{blue}{解}}}

\begin{align*}\int_0^{\pi}{\sqrt{\tan \frac{\theta}{2}}\ln^2 \left( \sin \theta \right) \text{d}\theta}&=\int_0^{\infty}{\frac{2\sqrt{t}}{1+t^2}\ln^2 \left( \frac{2t}{1+t^2} \right) \text{d}t}\hspace{0.5cm}t=\tan \frac{\theta}{2}\\&=\int_0^{\infty}{\frac{2\sqrt{1/t}}{1+t^2}\ln^2 \left( \frac{2}{t+1/t} \right) \text{d}t}\\&=\int_0^{\infty}{\frac{\sqrt{1/t}+\sqrt{1/t^3}}{t+1/t}\ln^2 \left( \frac{2}{t+1/t} \right) \text{d}t}\\&=\int_{-\infty}^{\infty}{\frac{2}{x^2+2}\ln^2 \left( \frac{2}{x^2+2} \right) \text{d}x}\\&=2\sqrt{2}\int_0^{\frac{\pi}{2}}{\ln^2 \left( \cos ^2u \right) \text{d}u}~~x=\sqrt2\tan u\\&=8\sqrt{2}\int_0^{\frac{\pi}{2}}{\ln ^2\sin u\text{d}u}=8\sqrt{2}\int_0^{\frac{\pi}{2}}{\left( -\ln 2-\sum_{k=1}^{\infty}{\frac{\cos \left( 2kx \right)}{k}} \right)^2 \text{d}u}\\&=8\sqrt{2}\left( \int_0^{\frac{\pi}{2}}{\ln ^22\text{d}u}+\sum_{n=1}^{\infty}{\frac{1}{k}\int_0^{\frac{\pi}{2}}{\frac{1+\cos 4kx}{2}\text{d}x}} \right)\\&=4\sqrt{2}\pi \ln ^22+2\sqrt{2}\pi \zeta \left( 2 \right) =\frac{\sqrt{2}}{3}\pi ^3+4\sqrt{2}\ln^2 2.\end{align*}


$f$是$[0,1]$上严格单增的凸实值连续函数,满足$f(0)=0,f(1)=1$,且$g(x)$满足$g(f(x))=x$对任意$x\in[0,1]$成立,证明

$$\int_0^1{f\left( x \right) g\left( x \right) \text{d}x}\le \frac{1}{3}.$$

\large{\textbf{\textcolor{blue}{证明}}} 首先我们有凸函数的等价定义:

定理.函数$f$在区间$I$上是凸函数,当且仅当对任何$(x_1,x_2)\subset I$及任何$x\in(x_1,x_2)$,有
$$\frac{f\left( x \right) -f\left( x_1 \right)}{x-x_1}\le \frac{f\left( x_2 \right) -f\left( x_1 \right)}{x_2-x_1}\le \frac{f\left( x_2 \right) -f\left( x \right)}{x_2-x}.$$
注意到$g(x)=f^{-1}(x)$是$f(x)$的反函数,只需要证明$f(x)f^{-1}(x)\leqslant x^2$即可,即
$$\frac{f\left( x \right)}{x}\leqslant \frac{x}{f^{-1}\left( x \right)}.$$
由题意知$f(x)\leqslant x\leqslant f^{-1}(x)$对$x\in[0,1]$都成立,结合$f(0)=0,f(1)=1,f$是凸函数可知对任意$x\in[0,1]$,$\exists t\in[x,1]$,s.t.$f(t)=x$于是由上述凸函数等价定义可知
$$\frac{f\left( x \right)}{x}\le \frac{f\left( t \right)}{t}=\frac{x}{f^{-1}\left( x \right)}.$$
于是$\displaystyle{f\left( x \right) g\left( x \right) =f\left( x \right) f^{-1}\left( x \right) \le x^2}$,
$$\int_0^1{f\left( x \right) g\left( x \right) \text{d}x}\leqslant \int_0^1{x^2\text{d}x}=\frac{1}{3}.$$
等号成立当且仅当$f(x)=x$.

求最大的常数$b>0$,使得对任意$a>0$和一切$(1,+\infty)$上连续可导且单增的实值函数$f(x)$满足$f(x)\leqslant x^{2a}\ln^bx,x\in(1,+\infty)$就有积分$\displaystyle{\int_1^{\infty}\frac{x^{2a-2}}{f'(x)}\mathrm{d}x=+\infty}$.


\large{\textbf{\textcolor{blue}{解}}} 首先如果$b>1$,我们取$f(x)=x^{2a}\ln^{b}x$,则求导后很容易得到积分$$\displaystyle{\int_1^{\infty}\frac{x^{2a-2}}{f'(x)}\mathrm{d}x<+\infty}$$
因此$b\leqslant1$,下面验证$b=1$满足条件.
如果$f'(x)$有界,结论显然成立,不妨设$f'(x)$无界,这时$f(x)$单调趋于$+\infty$.对$\forall A>0$,由Cauchy不等式得
$$\left( \int_{\text{e}^{\frac{A}{2}}}^{\text{e}^A}{\frac{x^{2a-2}}{f'\left( x \right)}\text{d}x} \right) \left( \int_{\text{e}^{\frac{A}{2}}}^{\text{e}^A}{\frac{f'\left( x \right)}{x^{2a}\ln ^2x}\text{d}x} \right) \geqslant \left( \int_{\text{e}^{\frac{A}{2}}}^{\text{e}^A}{\frac{\text{d}x}{x\ln x}} \right) ^2=\ln ^22.$$
由$f(x)\leqslant x^{2a}\ln x$得$f(\mathrm{e}^x)\leqslant x\mathrm{e}^{2ax}$,因此
\begin{align*}\int_{\textrm{e}^{\frac{A}{2}}}^{\textrm{e}^A}{\frac{f'\left(x\right)}{x^{2a}\ln^2x}\textrm{d}x}&=\int_{\frac{A}{2}}^A{\frac{f'\left(\textrm{e}^t\right)\textrm{e}^{2at}}{t^2\textrm{e}^{2at}}\textrm{d}t}=\int_{\frac{A}{2}}^A{\frac{\textrm{d}\left[f\left(\textrm{e}^{2t}\right)\right]}{t^2\textrm{e}^{2at}}}\\&=\left.\frac{f\left(\textrm{e}^t\right)}{t^2\textrm{e}^{2at}}\right|_{\frac{A}{2}}^{A}+\int_{\frac{A}{2}}^A{\frac{2t^2\textrm{e}^{-2at}+2t\textrm{e}^{-2at}}{t^4}f\left(\textrm{e}^t\right)\textrm{d}t}\\&\leqslant\frac{f\left(\textrm{e}^A\right)}{A^2\textrm{e}^{2A}}+\int_{\frac{A}{2}}^A{\frac{2t^2\textrm{e}^{-2at}+2t\textrm{e}^{-2at}}{t^4}t\textrm{e}^{2at}\textrm{d}t}\\&\leqslant\frac{1}{A}+2\left(\ln 2+\frac{1}{A}\right)=2\ln 2+\frac{3}{A}.\end{align*}
取$A$充分大,则$\displaystyle{\int_{\textrm{e}^{\frac{A}{2}}}^{\textrm{e}^A}{\frac{f'\left(x\right)}{x^{2a}\ln^2x}\textrm{d}x}\leqslant2}$, 因此
$$\int_{\textrm{e}^{A/2}}^{\textrm{e}^A}{\frac{\textrm{d}x}{f'\left(x\right)}}\geqslant\frac{\ln^22}{2}$$
对任意充分大的$A$都成立,于是积分$\displaystyle{\int_1^{+\infty}\frac{1}{f'(x)}\mathrm{d}x}=+\infty$,因此最大的$b=1$.

 \textbf{证明:}不等式的左边可利用$Cauchy-Schwarz$不等式证之,下证不等式的右边成立.由题意可知,
\[\begin{split}& (1-\frac{f}{M})(1-\frac{m}{f}) \geq 0 \Longrightarrow  1+\frac{m}{M} \geq \frac{f}{M}+\frac{m}{f}\\\Longrightarrow & 1+\frac{m}{M} \geq \frac1{M}\int^{1}_{0}{f}dx +m\int^{1}_{0}{\frac1{f}}dx \geq 2\sqrt{\frac{m}{M}\int^{1}_{0} \frac1{f}dx\int^{1}_{0}{f}dx}\\\Longrightarrow & \int^{1}_{0} \frac1{f}dx\int^{1}_{0}{f}dx\leq \frac{(m+M)^2}{4mM}.\end{split}\]
Avatar_small
BSEB Model Paper Cla 说:
2022年9月14日 21:21

Bihar Board Model Paper 2023 Class 11 Pdf Download for First Year Intermediate Arts, Science & Commerce Stream Question Bank by Every SCERT & NCERT Hindi Medium, English Medium & Urdu Medium Student of Bihar Patna Board can download BSEB 11th Model Paper 2023 or BSEB Intermediate Model Set 2023 for Paper-1 & Paper-2 Exam at BSEB Model Paper Class 11 Bihar School Examination, Patna Board and various private school teaching staff have designed and suggested the Intermediate Education First Year of STD-11 or Higher Secondary Education 11th Standard Arts, Science and Commerce Stream study & learning material as Bihar Board 11th Class Model Paper 2023.

Avatar_small
K2 Challan Generatio 说:
2023年1月22日 20:22

K2 challan also referred to as Khajane 2, an integrated financial management system from the Government of Karnataka. The K2 has been brought into working with an aim to manage the financial business of the government. K2 Challan Generation It works to simplify the process of remittance of departments under government by bringing an option of anywhere-anytime payment options. Firstly every department under the government of Karnataka will have access to Khajane 2 which allows their customers to remit to the government through the easy payment links provided.


登录 *


loading captcha image...
(输入验证码)
or Ctrl+Enter