Processing math: 100%
几个重要定理 - Eufisky - The lost book
与双重对数函数有关的积分
与调和数列有关的级数计算

几个重要定理

Eufisky posted @ 2017年8月07日 01:50 in 数学分析 with tags 定理 Ramanujan , 1282 阅读

1.Mittag-Leffler's theorem.

Ω是平面内的开集, AΩ, AΩ内没有极限点,且对每个aA,对应有一个正整数m(α)和一个有理函数Pα(z)=m(α)j=1cj,α(zα)j,则在Ω内存在一个亚纯函数f,它在每个αA处的主要部分是Pα且在Ω内没有其它极点.详见Rudin实分析与复分析P216.

这里有亚纯函数极展开的一些例子.

1sin(z)=nZ(1)nznπ=1z+2zn=1(1)nz2(nπ)2,cot(z)cos(z)sin(z)=nZ1znπ=1z+2zk=11z2(kπ)2,1sin2(z)=nZ1(znπ)2,1zsin(z)=1z2+n0(1)nπn(zπn)=1z2+n=1(1)nnπ2zz2(nπ)2.
2.Ramanujan's Master Theorem
假设x=0的一些邻域中有F(x)=k=0ϕ(k)(x)kk!对某些函数(称为解析或可积的)ϕ(k)成立.那么0xn1F(x)dx=Γ(n)ϕ(n).
参考:这里以及
Ramanujan's Proof
This proof was given by none other than Ramanujan.
Recall Euler's integral representation of the Gamma Function - 
0emxxn1dx=mnΓ(n).
where m,n>0. Let m=rk with r>0, multiply both sides by f(k)hkk! and sum on k,0k<, to obtain
k=0f(k)(a)hkk!0erkxxn1dx=Γ(n)k=0f(k)(a)(hrn)kk!.
 
Next, expand erkx,0k<, in its Maclaurin Series, invert the order of summation and integration, and apply Taylor's Theorem to deduce that
0xn1j=0f(hrj+a)j!(x)jdx=Γ(n)f(hrn+a).
 
Now define f(hrm+a)=φ(m), where m is real and a,h and r are regarded as constants. Then
0xn1j=0φ(j)(x)jj!dx=Γ(n)φ(n).
This completes Ramanujan's proof. Ramanujan was very fond of this clever, original technique and he used it many contexts.

例:证明0(k=0(1)kPk+1k!xk)dx=2,
其中Pk+1表示第k+1个素数,记P1=3.
由于0xs1(k=0Pk+1k!(x)k)dx=Γ(s)P1s,
s=1我们有0(k=0Pk+1k!(x)k)dx=P0=2.
3.Glasser's Master Theorem
对任意可积函数F(x)和形如
ϕ(x)=|a|xNn=1|αn|xβn
ϕ(x),恒等式PVF(ϕ(x))dx=PVF(x)dx成立,其中a,{αn}Nn=1{βn}Nn=1为任意常数.这里, PV表示Cauchy主值.这是从Cauchy的著名结果PVF(u)dx=F(x)dx
归纳出来的,其中u=x1/x.
例.0[(20152015+x++22+x+11+xx)2016+1]1dx.

I=0[(20152015+x++22+x+11+xx)2016+1]1dx,
I=12[(20152015+x++22+x+11+xx)2016+1]1dx,
I=12[(2015i=1ix+ix)2016+1]1dx.
 
Now, letting f(x)=1x2016+1, and noting that f(x)=f(x),
I=12f(2015i=1ix+ix)dx=12f((2015i=1ix+ix))dx
I=12f(x2015i=1ix(i))dx
Using Glasser's Master Theorem, 
I=12f(x) dx=121x2016+1 dx=01x2016+1 dx 

Now we know that B(a,b)=0ta1(1+t)a+bdt
From (2),after substituting x2016=t,
I=120160t120161(1+t)12016+20152016dt=12016B(12016,20152016)
Therefore I=12016Γ(12016)Γ(20152016)Γ(1)=π2016sin(π2016)1.0000004047320180811575
Avatar_small
CGBSE Model Paper Cl 说:
2022年9月07日 23:53

Chhattisgarh State Department of School Education (Elementary Level Primary Education) and other private school teaching staff of the state have designed and suggested CG Board 4th Class Model Paper 2023 with sample answers along with Mock Test and Practice Questions for Term1 & Term 2 Exams of the Course to All Languages and Subjects. CGBSE Model Paper Class 4 Every 4th Standard Student of SCERT & NCERT Syllabus Studying in Government or Private schools of Hindi Medium, English Medium and Urdu Medium can download and practice the CGBSE STD-4 Question Paper 2023 Pdf for Part-A, Part-B, Part-C and Part-D exam.


登录 *


loading captcha image...
(输入验证码)
or Ctrl+Enter