含奇点的第二型曲面积分计算 - Eufisky - The lost book
与调和数列有关的级数计算
杂题

含奇点的第二型曲面积分计算

Eufisky posted @ 2017年9月07日 21:14 in 数学分析 with tags 积分计算 多元 , 1842 阅读

谢惠民下册上的一道题:求

$$I=\iint_{\Sigma}{\left( x^3+\frac{1}{x} \right) dydz+\left( y^2-xz \right) dzdx+\left( z^3+\frac{z}{x^2} \right) dxdy},$$其中$\Sigma$是球面$x^2+y^2+z^2=2z$,取外侧.

解.注意到球面上的圆$x=0,y^2+z^2=2z$是上述积分的奇点,我们考察两半球$\Sigma_1:(x-\varepsilon)^2+y^2+(z-1)^2=1,x\geq\varepsilon$和$\Sigma_2:(x+\varepsilon)^2+y^2+(z-1)^2=1,x\leq -\varepsilon$, 其中$\varepsilon$为足够小的正数.并记$\Gamma_1$为圆盘$x=\varepsilon,y^2+(z-1)^2=1$,而$\Gamma_2$为圆盘$x=-\varepsilon,y^2+(z-1)^2=1$.

利用球的极坐标方程

\[x=\varepsilon+r\sin \varphi \cos \theta ,y=r\sin \varphi \sin \theta ,z=r\cos \varphi +1,\quad 0\leq \varphi\leq \pi,-\pi/2\leq\theta\leq \pi/2,0\leq r\leq 1\]

以及

\[x=-\varepsilon+r\sin \varphi \cos \theta ,y=r\sin \varphi \sin \theta ,z=r\cos \varphi +1,\quad 0\leq \varphi\leq \pi,\pi/2\leq\theta\leq 3\pi/2,0\leq r\leq 1\]

由Gauss公式可知

\begin{align*}I_{11}&=\iiint_{D_1}{\left( 3x^2+2y+3z^2 \right) dxdydz}\\&=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}{d\theta \int_0^{\pi}{d\varphi \int_0^1{\left[ 3\left( \varepsilon +r\sin \varphi \cos \theta \right) ^2+2r\sin \varphi \sin \theta +3\left( r\cos \varphi +1 \right) ^2 \right] r^2\sin \varphi dr}}}\\&=2\left( \varepsilon ^2+1 \right) \pi +\frac{3\pi}{2}\varepsilon +\frac{4\pi}{5}.\end{align*}
\begin{align*}I_{12}&=\iint_{\Gamma _1}{\left( x^3+\frac{1}{x} \right) dydz+\left( y^2-xz \right) dzdx+\left( z^3+\frac{z}{x^2} \right) dxdy}\\&=\iint_{\Gamma _1}{\left( \varepsilon ^3+\frac{1}{\varepsilon} \right) dydz}=\left( \varepsilon ^3+\frac{1}{\varepsilon} \right) \pi .\end{align*}
\begin{align*}I_{21}&=\iiint_{D_2}{\left( 3x^2+2y+3z^2 \right) dxdydz}\\&=\int_{\frac{\pi}{2}}^{\frac{3\pi}{2}}{d\theta \int_0^{\pi}{d\varphi \int_0^1{\left[ 3\left( -\varepsilon +r\sin \varphi \cos \theta \right) ^2+2r\sin \varphi \sin \theta +3\left( r\cos \varphi +1 \right) ^2 \right] r^2\sin \varphi dr}}}\\&=2\left( \varepsilon ^2+1 \right) \pi +\frac{3\pi}{2}\varepsilon +\frac{4\pi}{5}\end{align*}
\begin{align*}I_{22}&=\iint_{\Gamma _2}{\left( x^3+\frac{1}{x} \right) dydz+\left( y^2-xz \right) dzdx+\left( z^3+\frac{z}{x^2} \right) dxdy}\\&=\iint_{\Gamma _2}{\left( -\varepsilon ^3-\frac{1}{\varepsilon} \right) dydz}=-\left( \varepsilon ^3+\frac{1}{\varepsilon} \right) \pi.\end{align*}
因此$$I‘=I_{11}+I_{21}-I_{12}-I_{22}=4\left( \varepsilon ^2+1 \right) \pi +3\pi \varepsilon +\frac{8\pi}{5}\rightarrow \frac{28}{5}\pi,$$即$I=\frac{28}{5}\pi$.
设$J$为关于$x\left( t \right) $和$t$的连续函数,满足
$$\frac{\partial J}{\partial t}=\frac{1}{4}\left( \frac{\partial J}{\partial x} \right) ^2-x^2-\frac{1}{2}x^4,\qquad \text{其中}J\left[ x\left( 1 \right) ,1 \right] =0$$
求$J\left[ x\left( t \right) ,t \right]$.
 
关于 I will not change, no matter how U change … 
笙歌姐,这句话何解?
 
文科生:“不论你怎么移情别恋,我是不会变心的”理科生:“电流不随电压的变化而变化。”

I am here,because U are here.

$$IR\cdot \frac{\varepsilon S}{4\pi kd}\cdot \lim_{n\rightarrow \infty}\frac{\prod_{k=1}^n{k^k}}{n^{n^2/2+n/2+1/12}e^{-n^2/4}}\cdot k\ln W$$
Glaisher-Kinkelin constant
Avatar_small
BSNL Broadband Plans 说:
2022年8月08日 23:05

ISP provides unlimited calls to any network round the clock in all the BSNL broadband plans over fiber and DSL networks, and here we update the latest BSNL broadband unlimited plans daily across India as and when the update released for home and business tariff, So check each plan in detail to opt for best tariff. BSNL Broadband Plans Different circle specific BSNL broadband plans over DSL and Bharat Fiber (FTTH) technologies are available, we categorize each plan and provide the updated information of all the circles with new plans and tariff.

Avatar_small
Kar PUC History Mode 说:
2022年9月20日 04:06

History is one of the most important subjects for Arts/Humanities Stream PUC I and PUC II students, and Pre University Education subject experts are provided chapter wise study material with practice mock test question paper for History subject to Kannada medium and English medium Arts group students to SA, FA, Term and annual final public examination tests of March to the academic year of 2023. Kar PUC History Model Paper The Pre University Education Arts group students can download chapter wise guess and important questions from KAR PUC History Model Paper 2023.


登录 *


loading captcha image...
(输入验证码)
or Ctrl+Enter