曲线积分的计算 - Eufisky - The lost book
杂题
一个偏微分方程求解

曲线积分的计算

Eufisky posted @ 2017年9月19日 16:05 in 数学分析 with tags 积分计算 , 1123 阅读

写出圆周的单层位势$$U(a,b)=\int_{x^2+y^2=R^2}\ln \frac 1{\sqrt{(x-a)^2+(y-b)^2}}ds,\quad \text{其中}\,  a^2+b^2\neq R^2$$


解.不妨设$R>0$,否则考察$-R$.令$x=R\cos\theta,y=R\sin\theta$,则$$ds=\sqrt{\left[x'(\theta)\right]^2+\left[y'(\theta)\right]^2}d\theta=Rd\theta.$$因此

\begin{align*}U(a,b)&=R\int_0^{2\pi}\ln \frac 1{\sqrt{(R\cos\theta-a)^2+(R\sin\theta-b)^2}}d\theta\\&=R\int_0^{2\pi}\ln \frac 1{\sqrt{R^2+a^2+b^2-2aR\cos\theta-2bR\sin\theta}}d\theta\\&=-\frac R2\int_0^{2\pi}\ln \left(R^2+a^2+b^2-2R\sqrt{a^2+b^2}\sin(\theta+\varphi)\right)d\theta,\quad \text{其中}\, \tan\varphi=\frac ab\\&=-\frac R2\int_0^{2\pi}\ln \left(R^2+a^2+b^2-2R\sqrt{a^2+b^2}\cos\theta\right)d\theta\\&=-\frac R2\int_0^{\pi}\ln \left(R^2+a^2+b^2-2R\sqrt{a^2+b^2}\cos\theta\right)d\theta-\frac R2\int_\pi^{2\pi}\ln \left(R^2+a^2+b^2-2R\sqrt{a^2+b^2}\cos\theta\right)d\theta\\&=-\frac R2\int_0^{\pi}\ln \left(R^2+a^2+b^2-2R\sqrt{a^2+b^2}\cos\theta\right)d\theta-\frac R2\int_0^\pi\ln \left(R^2+a^2+b^2+2R\sqrt{a^2+b^2}\cos\theta\right)d\theta.\end{align*}

中间几步注意到了对积分变量进行诸如$u=\theta+c$的变换改变积分上下限,而$\sin x$和$\cos x$的最小周期为$2\pi$.因此仍等于$0$到$2\pi$上的积分.

再由比较常见的Poisson积分公式有$$\int_0^\pi\ln (a\pm b\cos x)dx=\pi\ln\frac{a+\sqrt{a^2-b^2}}{2},\quad a\geq b\geq 0$$此公式证明只需把积分看成是关于$b$的函数,对$b$求导即可.

由此得$$\int_0^\pi\ln \left(a^2\pm 2ab\cos x+b^2\right)dx=\begin{cases}2\pi\ln a,&a\geq b\geq 0\\2\pi\ln b,&b\geq a\geq 0\end{cases}$$因此所求积分为

$$U(a,b)=\begin{cases}-2\pi |R|\ln |R|,& a^2+b^2<R^2\\-\pi |R|\ln \left(a^2+b^2\right),& a^2+b^2>R^2\end{cases}$$


在惯性系内一不受外力作用的刚性飞行器绕固定点转动的动态可用Euler方程描述\begin{align*}J_1\dot\omega_1&=(J_2-J_3)\omega_2\omega_3,\\J_2\dot\omega_2&=(J_3-J_1)\omega_3\omega_1,\\J_3\dot\omega_3&=(J_1-J_2)\omega_1\omega_2.\end{align*}其中$\omega_1,\omega_2,\omega_3$为刚体转动角速度的投影, $J_1,J_2,J_3$为惯性主轴的转动惯量且$J_1,J_2,J_3$均大于$0$.

(1)研究

Avatar_small
AP SSC Sanskrit Ques 说:
2022年9月25日 22:23

AP 10th Class Sanskrit Model Paper 2023 Pdf Download has been designed for every Telugu Medium & English Medium student studying in the AP State Board Government & Private Schools. Department of School Education and Subject experts of the board have designed and suggested the Sanskrit Study and Learning material for all exam formats of the board such as Summative Assessments (SA-1 & SA-2), AP SSC Sanskrit Question Paper and Formative Assessments (FA-1, FA-2, FA-3, FA-4) along with Assignments. Class teachers of the school and Leading educational institute subject experts have designed and suggested the AP SSC Sanskrit practice paper with revision questions chapter by chapter to both TM, EM & UM students.


登录 *


loading captcha image...
(输入验证码)
or Ctrl+Enter