一个偏微分方程求解 - Eufisky - The lost book
曲线积分的计算
翻译事宜

一个偏微分方程求解

Eufisky posted @ 2017年9月21日 00:09 in 数学分析 with tags 方程 , 870 阅读
$$\frac{\partial J}{\partial t}=\frac{1}{4}\left( \frac{\partial J}{\partial x} \right) ^2-x^2-\frac{1}{2}x^4 \tag 1$$
$$\frac{\partial^2 J}{\partial t\partial x}=\frac{1}{2} \frac{\partial J}{\partial x}\frac{\partial^2 J}{\partial x^2} -2x-2x^3$$
Change of function :
$$\frac{\partial J}{\partial x}=u(x,t)\quad\to\quad \frac{\partial u}{\partial t} -\frac{1}{2} u\frac{\partial u}{\partial x}= -2x-2x^3 \tag 2$$
Characteristic system of equations :
$$\frac{dt}{1}=\frac{dx}{-\frac{1}{2} u}=\frac{du}{-2x-2x^3}$$
First family of characteristic curves, from $\quad -2\frac{dx}{ u}=\frac{du}{-2x-2x^3} :$
$$2udu-(8x+8x^3)dx=0 \quad\to\quad u^2-4x^2-2x^4=c_1$$
Second family of characteristic curves, from $\frac{dt}{1}=\frac{dx}{-\frac{1}{2} u} :$
$$dx+\frac{u}{2}dt=0=dx+\frac{\sqrt{c_1+4x^2+2x^4}}{2}dt$$
$$dt+\frac{2dx}{\sqrt{c_1+4x^2+2x^4}}=0 \quad\to\quad t+\int\frac{2dx}{\sqrt{c_1+4x^2+2x^4}}=c_2 $$
The integral can be expressed on closed form. The formula involves a special function, namely the Elliptic Integral of the first kind :
http://www.wolframalpha.com/input/?i=integrate+2%2Fsqrt(C%2B4+x%5E2%2B2+x%5E4)&x=0&y=0
 
[![enter image description here][1]][1]
 
In interest of space and in order to make easier the writing, this big formula will be symbolized as :
$$\int\frac{2dx}{\sqrt{c_1+4x^2+2x^4}}=\Psi\left(c_1,x\right)$$
Where $\Psi$ is the above known function. Thus the second family of characteristic curves is :
$$ t+\Psi\left(c_1,x\right)=c_2$$
 
The general solution of the PDE $(2)$ is expressed on the form of the implicit equation :
$$F\left(\left(u^2-4x^2-2x^4\right) \:,\: \left(t+\Psi\left(u^2-4x^2-2x^4\:,\:x\right)\right) \right)=0$$
where $F$ is any differentiable function of two variables.
 
The function $F$ might be determined according to a boundary condition which has to be derived from a given boundary condition of Eq.$(1)$. Nevertheless it appears doubtful to find a closed form for $F$ considering the complicated function $\Psi$.
 
Supposing that the function $F$ be determined, which is optimistic, a more difficult step comes after, to go from $u(x,t)$ to $J(x,y)$, which suppose possible to find a closed form for $\int u(x,t)dx$.
 
 
  [1]: https://i.stack.imgur.com/DLyqp.jpg
 
对于实矩阵$A=\left[ \begin{matrix}A_1& A_3\\0& A_2\\\end{matrix} \right] $
 
 
Avatar_small
AP SSC Evs Model Pap 说:
2022年9月10日 19:26

Every Telugu Medium, English Medium and Urdu Medium student of the State Board can download the AP 10th Class EVS Model Paper 2023 Pdf with answers for term-1 & term-2 exams of SA-1, SA-2 and other exams of the board. AP SSC Evs Model Paper Environmental Education is one of the most important subjects and it’s a part of Science. School Education Department and various leading private school teaching staff have designed and suggested the practice question paper for all Part-A, Part-B, Part-C, and Part-D questions of SA-1, SA-2, FA-1, FA-2, FA-3, FA-4 and Assignments. Advised to everyone can contact the class teacher to get important questions for all lessons and topics of EVS.


登录 *


loading captcha image...
(输入验证码)
or Ctrl+Enter