傅里叶变换求积分函数
来自刚哥的虐心的积分题:
\begin{align*}&\int_0^\infty {\frac{{\cos tx}}{{1 + {t^2}}}} dt;\\&\int_0^\infty {\frac{{\left( {{u^2} + 2} \right)\cos ux}}{{{u^4} + 4}}du} .\end{align*}
解:事实上,由Fourier变换公式
\begin{align*}{e^{ - x}} &= \frac{2}{\pi }\int_0^\infty {cos\left( {\lambda x} \right)d\lambda \int_0^\infty {{e^{ - u}}} cos\left( {\lambda u} \right)} du = \frac{2}{\pi }\int_0^\infty {\frac{{\cos \lambda x}}{{{\lambda ^2} + 1}}d\lambda } ;\\{e^{ - x}}\cos x &= \frac{2}{\pi }\int_0^\infty {\cos \left( {xu} \right)du} \int_0^\infty {{e^{ - t}}\cos t\cos \left( {ut} \right)dt} = \frac{2}{\pi }\int_0^\infty {\frac{{\left( {{u^2} + 2} \right)\cos ux}}{{{u^4} + 4}}du}.\end{align*}
我们得到
\begin{align*}\int_0^\infty {\frac{{\cos \lambda x}}{{{\lambda ^2} + 1}}d\lambda } &= \frac{\pi }{2}{e^{ - x}};\\\int_0^\infty {\frac{{\left( {{u^2} + 2} \right)\cos ux}}{{{u^4} + 4}}du} &= \frac{\pi }{2}{e^{ - x}}\cos x.\end{align*}
一般地,找到以下结论
\begin{align*}\int_0^\infty {\frac{{\cos xu}}{{{\beta ^2} + {u^2}}}du} &= \frac{\pi }{{2\beta }}{e^{ - \beta x}} \qquad x > 0,\beta > 0;\\\int_0^\infty {\frac{{u\sin xu}}{{{\beta ^2} + {u^2}}}du} &= \frac{\pi }{2}{e^{ - \beta x}}\qquad x > 0,\beta > 0;\\\int_0^\infty {\frac{{{x^{\mu - 1}}\sin \left( {ax} \right)}}{{{x^2} + 1}}dx} &= - {a^{2 - \mu }}\mathbf{\Gamma} \left( {\mu - 2} \right){}_1{F_2}\left( {1;\frac{{3 - \mu }}{2},\frac{{4 - \mu }}{2};\frac{{{a^2}}}{4}} \right)\mathrm{sign}\left( a \right)\sin \frac{{\mu \pi }}{2}\\&+ \frac{\pi }{2}\sec \frac{{\mu \pi }}{2}\sinh \left( a \right)\qquad{\mathop{\rm Im}\nolimits} a = 0, - 1 < \mathrm{Re}\mu < 3;\\\int_0^\infty {\frac{{{x^{\mu - 1}}\cos \left( {ax} \right)}}{{{x^2} + 1}}dx} &= \frac{\pi }{{2\sin \frac{{\mu \pi }}{2}}}\cosh a + \frac{1}{2}\cos \frac{{\mu \pi }}{2}\mathbf{\Gamma} \left( \mu \right)\\&\left[ {{e^{ - a + i\pi \left( {1 - \mu } \right)}}\gamma \left( {1 - \mu , - a} \right) - {e^a}\gamma \left( {1 - \mu ,a} \right)} \right]\qquad a > 0,0 < \mathrm{Re}\mu < 3;\\\int_0^\infty {\frac{{{x^{2\mu + 1}}\sin \left( {ax} \right)}}{{{x^2} + {b^2}}}dx} &= - \frac{\pi }{{2\cos \left( {\mu \pi } \right)}}{b^{2\mu }}\mathrm{sinh}\left( {ab} \right) + \frac{{\sin \left( {\mu \pi } \right)}}{{2{a^{2\mu }}}}\mathbf{\Gamma} \left( {2\mu } \right)\\&\left[ {{}_1{F_1}\left( {1;1 - 2\mu ;ab} \right) + {}_1{F_1}\left( {1;1 - 2\mu ; - ab} \right)} \right] \qquad a > 0, - \frac{3}{2} < \mathrm{Re}\mu < \frac{1}{2};\\\int_0^\infty {\frac{{{x^{2\mu + 1}}\cos \left( {ax} \right)}}{{{x^2} + {b^2}}}dx} &= - \frac{\pi }{{2\sin \left[ {\left( {\mu + \frac{1}{2}} \right)\pi } \right]}}{b^{2\mu + 1}}\cosh \left( {ab} \right) + \frac{{\cos \left[ {\left( {\mu + \frac{1}{2}} \right)\pi } \right]}}{{2{a^{2\mu + 1}}}}\mathbf{\Gamma} \left( {2\mu + 1} \right)\\&\left[ {{}_1{F_1}\left( {1; - 2\mu ;ab} \right) + {}_1{F_1}\left( {1; - 2\mu ; - ab} \right)} \right] \qquad a > 0, - 1 < \mathrm{Re}\mu < \frac{1}{2}.\end{align*}
2022年8月17日 23:01
JKBOSE 12th New Question Paper 2023, Jammu and Kashmir 12th Board exam performance as Pathway for all candidates to appear in the Board Exam. Board exams either 10th or 12th class exams are very important in a students life. JKBOSE 12th Question Paper 2023 12th class Board exams are mandatory for every student who is studying.