一个级数求解
\[\sum\limits_{n = 1}^\infty {\frac{{\ln n}}{{{n^2}}}} = - \frac{{{\pi ^2}}}{6}\left( { - 12\ln A + \gamma + \ln 2 + \ln \pi } \right).\]
证明:(Glaisher–Kinkelin constant)\[\boxed{\ln A = \mathop {\lim }\limits_{n \to \infty } \left[ {\frac{{{n^2}}}{4} - \left( {\frac{{{n^2}}}{2} + \frac{n}{2} + \frac{1}{{12}}} \right)\ln n + \sum\limits_{k = 1}^n {k\ln k} } \right].}\]
(Riemann zeta函数的导函数)\[\boxed{\zeta '\left( s \right) = - \sum\limits_{k = 1}^\infty {\frac{{\ln k}}{{{k^s}}}} .}\]
(Gamma 函数)
\[\Gamma \left( s \right) = \int_0^\infty {{x^{s - 1}}{e^{ - x}}dx}. \]
首先,证明$\zeta'(-1)=\frac{1}{12}-\ln A$.
再证明$\Gamma'(2)=1-\gamma.$
\[\Gamma '\left( 2 \right) = \int_0^\infty {x{e^{ - x}}\ln xdx} = \int_0^\infty {\left( {{e^{ - x}} + {e^{ - x}}\ln x} \right)dx} = 1 - \gamma .\]
利用
\[\zeta \left( s \right) = {2^s}{\pi ^{s - 1}}\sin \frac{{\pi s}}{2}\Gamma \left( {1 - s} \right)\zeta \left( {1 - s} \right).\]
令$s=-1$,我们有$\zeta{-1}=-\frac{1}{12}.$
两边同取对数得
\[\ln \zeta \left( s \right) = s\ln 2 + \left( {s - 1} \right)\ln \pi + \ln \sin \frac{{\pi s}}{2} + \ln \Gamma \left( {1 - s} \right) + \ln \zeta \left( {1 - s} \right).\]
求导,得到\[\frac{{\zeta '\left( s \right)}}{{\zeta \left( s \right)}} = \ln \left( {2\pi } \right) + \frac{\pi }{{2\tan \frac{{\pi s}}{2}}} - \frac{{\Gamma '\left( {1 - s} \right)}}{{\Gamma \left( {1 - s} \right)}} - \frac{{\zeta '\left( {1 - s} \right)}}{{\zeta \left( {1 - s} \right)}}.\]
令$s=-1$,我们有
\[\frac{{\zeta '\left( { - 1} \right)}}{{\zeta \left( { - 1} \right)}} = 12\ln A - 1 = \ln \left( {2\pi } \right) - 1 + \gamma - \frac{{\zeta '\left( 2 \right)}}{{\zeta \left( 2 \right)}}.\]
\[ \Rightarrow \zeta '\left( 2 \right) = \frac{{{\pi ^2}}}{6}\left( {\ln \left( {2\pi } \right) - 12\ln A + \gamma } \right).\]
因此我们得到\[\sum\limits_{n = 1}^\infty {\frac{{\ln n}}{{{n^2}}}} = - \frac{{{\pi ^2}}}{6}\left( { - 12\ln A + \gamma + \ln 2 + \ln \pi } \right).\]
2024年1月13日 03:38
It was thinking about whether I could utilize this review on my other site, I will connect it back to your site though.Great Thanks