Ramanujan相关问题研究 - Eufisky - The lost book
Euler Sum的若干研究
$\sum{\frac{n}{{{e^{2\pi n}} - 1}}}$型的级数求解

Ramanujan相关问题研究

Eufisky posted @ 2014年7月23日 19:12 in 数学分析 with tags Ramanujan , 1832 阅读

问题一:

\[\int_0^\infty  {\frac{{dx}}{{\left( {1 + {x^2}} \right)\left( {1 + {r^2}{x^2}} \right)\left( {1 + {r^4}{x^2}} \right)\left( {1 + {r^6}{x^2}} \right) \cdots }}}  = \frac{\pi }{{2\left( {1 + r + {r^3} + {r^6} + {r^{10}} +  \cdots } \right)}}.\]

Proof.If we set
$$ f(x)=\prod_{n=0}^{+\infty}(1+r^{2n}x^2) $$
we have:
$$\int_{0}^{+\infty}\frac{dx}{f(x)}=\pi i\sum_{m=0}^{+\infty}\operatorname{Res}\left(f(z),z=\frac{i}{r^m}\right)=\frac{\pi}{2}\sum_{m=0}^{+\infty}\frac{1}{r^m}\prod_{n\neq m}(1-r^{2n-2m})^{-1}\tag{1}$$
but since 
$$ \prod_{n=0}^{+\infty}(1-x^n z)^{-1}=\sum_{n=0}^{+\infty}\frac{z^n}{(1-x)\cdot\ldots\cdot(1-x^n)}$$
is one of the Euler's partitions identities, and:
$$\frac{\pi}{2}\sum_{m=0}^{+\infty}\frac{1}{r^m}\prod_{n\neq m}(1-r^{2n-2m})^{-1}=\frac{\pi}{2}\prod_{n=1}^{+\infty}(1-r^{2n})^{-1}\sum_{m=0}^{+\infty}\frac{(1/r)^m}{(1-(1/r^2))\cdot\ldots\cdot(1-(1/r^2)^m)}$$
we have:
$$\int_{0}^{+\infty}\frac{dz}{f(z)}=\frac{\pi}{2}\prod_{n=1}^{+\infty}(1-r^{2n})^{-1}\prod_{m=0}^{+\infty}\left(1-\frac{1}{r^{2m+1}}\right)^{-1}\tag{2}$$
and the claim follows from the Jacobi triple product identity:
$$\sum_{k=-\infty}^{+\infty}s^k q^{\binom{k+1}{2}}=\prod_{m\geq 1}(1-q^m)(1+s q^m)(1+s^{-1}q^{m-1}).$$
 

参阅:http://math.stackexchange.com/questions/876106/how-find-this-integral-int-0-infty-fracdx1x21r2x21r4x21

问题二:Ramanujan Log-Trigonometric Integrals

\begin{align*}R_n^ -  &= \frac{2}{\pi }\int_0^{\frac{\pi }{2}} {{{\left( {{\theta ^2} + {{\ln }^2}\cos \theta } \right)}^{ - 2\left( { - n - 1} \right)}}\sqrt {\frac{1}{2} + \frac{1}{2}\sqrt {\frac{1}{2} +  \cdots +\frac{1}{2}\sqrt {\frac{{{{\ln }^2}\cos \theta }}{{{\theta ^2} + {{\ln }^2}\cos \theta }}} } } d\theta }  = {\left( {\ln 2} \right)^{ - {2^{ - n}}}}\\R_n^ +  &= \frac{2}{\pi }\int_0^{\frac{\pi }{2}} {{{\left( {{\theta ^2} + {{\ln }^2}\cos \theta } \right)}^{2\left( { - n - 1} \right)}}\sqrt {\frac{1}{2} + \frac{1}{2}\sqrt {\frac{1}{2} +  \cdots +\frac{1}{2}\sqrt {\frac{{{{\ln }^2}\cos \theta }}{{{\theta ^2} + {{\ln }^2}\cos \theta }}} } } d\theta }  = {\left( {\ln 2} \right)^{{2^{ - n}}}}.\end{align*}
问题二:Ramanujan's eccentric Integral formula
\[\int_0^\infty  {\frac{{1 + \frac{{{x^2}}}{{{{\left( {b + 1} \right)}^2}}}}}{{1 + \frac{{{x^2}}}{{{a^2}}}}} \times \frac{{1 + \frac{{{x^2}}}{{{{\left( {b + 2} \right)}^2}}}}}{{1 + \frac{{{x^2}}}{{{{\left( {a + 1} \right)}^2}}}}} \times  \cdots dx}  = \frac{{\sqrt \pi  }}{2} \times \frac{{\Gamma \left( {a + \frac{1}{2}} \right)\Gamma \left( {b + 1} \right)\Gamma \left( {b - a + \frac{1}{2}} \right)}}{{\Gamma \left( a \right)\Gamma \left( {b + \frac{1}{2}} \right)\Gamma \left( {b - a + 1} \right)}}.\]
Proof.Andrey Rekalo:This is one of those precious cases when Ramanujan himself provided (a sketch of) a proof. The identity was published in his paper "Some definite integrals"  (Mess. Math. 44 (1915), pp. 10-18) together with several related formulae. 
 
It might be instructive to look first at the simpler identity (i.e. the limiting case when $b\to\infty$; the identity mentioned in the original question can be obtained by a similar approach):
$$\int\limits_{0}^{\infty} \prod_{k=0}^{\infty}\frac{1}{  1 + x^{2}/(a+k)^{2}}dx = \frac{\sqrt{\pi}}{2} \frac{ \Gamma(a+\frac{1}{2})}{\Gamma(a)},\quad a>0.\qquad\qquad\qquad(1)$$
Ramanujan  derives (1) by using a partial fraction decomposition of the product  $\prod_{k=0}^{n}\frac{1}{  1 + x^{2}/(a+k)^{2}}$, integrating term-wise, and passing to the limit $n\to\infty$. He also indicates that alternatively (1) is implied by the factorization 
$$\prod_{k=0}^{\infty}\left[1+\frac{x^2}{(a+k)^2}\right] = \frac{ [\Gamma(a)]^2}{\Gamma(a+ix)\Gamma(a-ix)},$$
which follows readily from  Euler's product formula for the gamma function. Thus (1) is equivalent to the formula 
$$\int\limits_{0}^{\infty}\Gamma(a+ix)\Gamma(a-ix)dx=\frac{\sqrt{\pi}}{2} \Gamma(a)\Gamma\left(a+\frac{1}{2}\right).$$
 
------------------------------------------------------------------
 
There is a nice paper "Wallis-Ramanujan-Schur-Feynman" by Amdeberhan et al (American Mathematical Monthly 117 (2010), pp. 618-632) that discusses interesting combinatorial aspects of formula (1) and its generalizations. 
 
David Hansen:Here is a proof of Ramanujan's identity (thanks to Todd Trimble for encouraging me to post this!).  As Andrey Rekalo notes, we have the identity $$\prod_{k=0}^{\infty}(1+\frac{x^2}{(k+a)^2})=\frac{\Gamma(a)^2}{|\Gamma(a+ix)|^2}$$.  In particular, the integrand in Ramanujan's integral is $\frac{\Gamma(b+1)^2 |\Gamma(a+ix)|^2}{\Gamma(a)^2 |\Gamma(b+1+ix)|^2}$.  Hence, after a little algebra (and also changing $b$ to $b-1$; I personally think Ramanujan made the wrong aesthetic choice here), we need to prove the integral evaluation $$I=\int_{-\infty}^{\infty} \frac{|\Gamma(a+ix)|^2}{|\Gamma(b+ix)|^2}dx=\sqrt{\pi}\frac{\Gamma(a)\Gamma(a+1/2)\Gamma(b-a-1/2)}{\Gamma(b-1/2)\Gamma(b)\Gamma(b-a)}$$.
 
Now, if $f(x)$ has Mellin transform $F(s)$, then one form of Parseval's theorem for Mellin transforms is the identity $$\int_{0}^{\infty}f(x)x^{-1}dx=\frac{1}{2\pi}\int_{-\infty}^{\infty}|F(it)|^2 dt$$ (under suitable conditions of course).  Applying this with the Mellin pair $$f(x)=\Gamma(b-a)^{-1}x^{a}(1-x)^{b-a-1} \; \mathrm{if} \; 0\leq x \leq 1$$ (and $f=0$ otherwise), $$F(s)=\frac{\Gamma(s+a)}{\Gamma(s+b)}$$ gives
 
\begin{align*}I&=2\pi \Gamma(b-a)^{-2} \int_{0}^{\infty}x^{2a-1}(1-x)^{2b-2a-2}dx\\&=2\pi \Gamma(b-a)^{-2} \frac{\Gamma(2a) \Gamma(2b-2a-1)}{\Gamma(2b-1)}.\end{align*}
 
Next, apply the formula $$\Gamma(2z)=2^{2z-1}\pi^{-1/2}\Gamma(z)\Gamma(z+1/2)$$ to each of the $\Gamma$-functions in the quotient here, getting 
 
$$I=\sqrt{\pi} \frac{\Gamma(a)\Gamma(a+1/2)\Gamma(b-a-1/2)\Gamma(b-a)}{\Gamma(b-a)^2 \Gamma(b-1/2) \Gamma(b)}$$, and cancelling a $\Gamma(b-a)$ concludes the proof.
 
Exercise: Give a proof, along similar lines, of the formula
 
$$\int_{-\infty}^{\infty} |\Gamma(a+ix)\Gamma(b+ix)|^2 dx=\sqrt{\pi}\frac{\Gamma(a)\Gamma(a+1/2)\Gamma(b)\Gamma(b+1/2)\Gamma(a+b)}{\Gamma(a+b+1/2)}$$, 
 
and determine for what range of $a,b$ it holds.
 
 
问题二:Ramanujan's eccentric Integral formula
If $\alpha$ and $\beta$ are positive numbers such that $\alpha\dots \beta=\pi^2$ then,
\[\alpha  \cdot \sum\limits_{n = 1}^\infty  {\frac{n}{{{e^{2n\alpha }} - 1}}}  + \beta \sum\limits_{n = 1}^\infty  {\frac{n}{{{e^{2n\beta }} - 1}}}  = \frac{{\alpha  + \beta }}{{24}} - \frac{1}{4}.\]
Proof.I believe this formula is true, provided the $\alpha$ in the second sum is changed to a $\beta$, as suggested by Todd Trimble's comment. Let
$$ P(x) = \prod_{n=1}^\infty \frac{1}{1-x^n} $$
be the generating function for the number of partitions of a non-negative integer $n$. Dedekind proved that $P$ satisfies the transformation formula
$$ \log P(e^{-2\pi t}) - \log P(e^{-2\pi /t}) = \frac{\pi}{12} \Bigl( \frac{1}{t} - t \Bigr)+ \frac{1}{2} \log t $$
for $t > 0$.
Differentiating this formula with respect to $t$ gives
$$ -\sum_{n=1}^\infty \frac{2\pi n}{e^{2\pi n t}-1} - \frac{1}{t^2} \sum_{n=1}^\infty \frac{2\pi n}{e^{2\pi n/t} -1} = \frac{\pi}{12} \Bigl( -\frac{1}{t^2} - 1\Bigr) + \frac{1}{2t} $$
Now multiply through by $-t/2$ and substitute $\alpha = \pi t$, $\beta = \pi /t$ to get
$$ \sum_{n=1}^\infty \frac{\alpha n}{e^{2n\alpha}-1} + \sum_{n=1}^\infty \frac{\beta n}{e^{2n\beta}-1} = \frac{1}{24}(\beta+\alpha) - \frac{1}{4}$$
which is Ramanujan's formula. 
 
The transformation formula for $P$ is related to the theory of modular forms, of which
the Eisenstein series mentioned in Derek Jennings' answer to your question on math.stackexchange are important examples. Briefly, if we define
$$ \eta(\tau) = \frac{e^{2\pi i \tau/24}}{P(e^{2\pi i \tau})} = e^{2\pi i \tau/24} \prod_{n=1}^\infty (1-e^{2\pi i n \tau}), $$
then $\eta(\tau)^{24}$ is a modular form of weight $12$. As such, $\eta$ satisfies the identity
$$ \eta(-1/\tau) = \sqrt{-i \tau}\; \eta(\tau). $$
The transformation formula for $P$ follows by setting $\tau = it$ and taking logs.
 
Avatar_small
AP SSC Assignment Mo 说:
2022年9月09日 02:32

Department of Government Examinations and Secondary Education Board Andhra Pradesh has conducted the Assignment Exams multiple times in the academic year in Session-1 and Session-2 (Term-1 & Term-2). There are four exams are conducted Assignment-1, Assignment-2, Assignment-3 and Assignment-4. AP SSC Assignment Model Paper Every Class 10th Standard Student Studying in Government & Private Schools in Telugu Medium, English Medium & Urdu Medium can download the AP 10th Assignment Model Paper 2023 with answer solutions for theory, objective and bit questions. Subject experts of the board have designed and introduced the practice question bank for all Part-A, Part-B, Part-C, and Part-D exams.


登录 *


loading captcha image...
(输入验证码)
or Ctrl+Enter