无穷套根式的一些特殊情形(Nested Radical)
情形一:(Vieta)\[\frac{2}{\pi } = \sqrt {\frac{1}{2}} \sqrt {\frac{1}{2} + \frac{1}{2}\sqrt {\frac{1}{2}} } \sqrt {\frac{1}{2} + \frac{1}{2}\sqrt {\frac{1}{2} + \frac{1}{2}\sqrt {\frac{1}{2}} } } \cdots .\]
情形二:\[x = \sqrt[n]{{\left( {1 - q} \right){x^n} + q{x^{n - 1}}\sqrt[n]{{\left( {1 - q} \right){x^n} + q{x^{n - 1}}\sqrt[n]{ \cdots }}}}}.\]
有以下几种特殊情形:
\begin{align*}\frac{{b + \sqrt {{b^2} + 4a} }}{2} &= \sqrt {a + b\sqrt {a + b\sqrt {a + b\sqrt \cdots } } } \left( {n = 2,q = 1 - \frac{a}{{{x^2}}},x = \frac{b}{q}} \right)\\x &= \sqrt[n]{{{x^{n - 1}}\sqrt[n]{{{x^{n - 1}}\sqrt[n]{{{x^{n - 1}}\sqrt[n]{ \cdots }}}}}}}\left( {q = 1} \right)\\x &= \sqrt {x\sqrt {x\sqrt {x\sqrt {x\sqrt \cdots } } } } \left( {q = 1,n = 2} \right).\end{align*}
情形二:由以上情形可推得:\[{q^{\frac{{{n^k} - 1}}{{n - 1}}}}{x^{{n^j}}} = \sqrt[n]{{{q^{\frac{{{n^{k + 1}} - n}}{{n - 1}}}}\left( {1 - q} \right){x^{{n^{j + 1}}}} + \sqrt[n]{{{q^{\frac{{{n^{k + 2}} - n}}{{n - 1}}}}\left( {1 - q} \right){x^{{n^{j + 2}}}} + \sqrt[n]{ \cdots }}}}}.\]
特殊情形有:
\[\sqrt 2 = \sqrt {\frac{2}{{{2^{{2^0}}}}} + \sqrt {\frac{2}{{{2^{{2^1}}}}} + \sqrt {\frac{2}{{{2^{{2^2}}}}} + \sqrt {\frac{2}{{{2^{{2^3}}}}} + \sqrt {\frac{2}{{{2^{{2^4}}}}} + \cdots } } } } } \left( {q = \frac{1}{2},n = 2,x = 1,k = - 1} \right).\]
情形三:\[\sqrt[{n - 1}]{x} = \sqrt[n]{{x\sqrt[n]{{x\sqrt[n]{{x \cdots }}}}}}.\]
由于
\[\left\{ \begin{array}{l}1 + \frac{1}{n} + \frac{1}{{{n^2}}} + \cdots = 1 + \frac{1}{{n - 1}}\\\frac{1}{n} + \frac{1}{{{n^2}}} + \frac{1}{{{n^3}}} + \cdots = \frac{1}{{n - 1}}\\\frac{1}{n}\left( {1 + \frac{1}{n}\left( {1 + \frac{1}{n}\left( {1 + \cdots } \right)} \right)} \right) = \frac{1}{{n - 1}}\end{array} \right.\left( {n \ge 2,n \in {N_ + }} \right).\]
令$n=3$,我们有\[\sqrt x = \sqrt[3]{{x\sqrt[3]{{x\sqrt[3]{{x \cdots }}}}}}.\]
情形四: (Ramanujan)
\[x + n + a = \sqrt {ax + {{\left( {n + a} \right)}^2} + x\sqrt {a\left( {x + n} \right) + {{\left( {n + a} \right)}^2} + \left( {x + n} \right)\sqrt {a\left( {x + 2n} \right) + {{\left( {n + a} \right)}^2} + \left( {x + 2n} \right)\sqrt \cdots }}}.\]
特殊地,有\[x + 1 = \sqrt {1 + x\sqrt {1 + \left( {x + 1} \right)\sqrt {1 + \left( {x + 2} \right)\sqrt {1 + \cdots } } } } \left( {a = 0,n = 1} \right).\]由此有我们熟知的
\[3 = \sqrt {1 + 2\sqrt {1 + 3\sqrt {1 + 4\sqrt {1 + 5\sqrt \cdots } } } } \left( {a = 0,n = 1,x = 2} \right).\]
The justification of this process both in general and in the particular example of $\ln\sigma$, where $\sigma$ is Somos's quadratic recurrence constant in given by Vijayaraghavan (in Ramanujan 2000, p. 348).
情形五:
由下面两式
\[\left\{ \begin{array}{l}e = 1 + \frac{1}{{1!}} + \frac{1}{{2!}} + \frac{1}{{3!}} + \cdots \\e = 1 + 1 + \frac{1}{2}\left( {1 + \frac{1}{3}\left( {1 + \frac{1}{4}\left( {1 + \frac{1}{5}\left( {1 + \cdots } \right)} \right)}\right)} \right)\end{array} \right.\]
得
\[{x^{e - 2}} = \sqrt {x\sqrt[3]{{x\sqrt[4]{{x\sqrt[5]{{x \cdots }}}}}}}. \]
参考资料