一个很火的积分题
求解\[\displaystyle \int_0^1 \frac{\log^2(1-x)\log(x)}{x}dx=-\frac{\pi^4}{180}.\]
解.$For $|z|<1$ we have that
\[S=\sum\limits_{j=1}^{+\infty }{H_{j}z^{j}}=-\frac{\ln \left( 1-z \right)}{1-z}.\]
Expanding the logarithm and the geometric series
\begin{align*}S&=-\frac{\ln \left( 1-z \right)}{1-z}\\&=\frac{1}{1-z}\sum\limits_{j=1}^{+\infty }{\frac{z^{j}}{j}}=\frac{1}{1-z}\left( z+\frac{z^{2}}{2}+\frac{z^{3}}{3}+\frac{z^{4}}{4}+... \right)=\left( 1+z+z^{2}+... \right)\left( z+\frac{z^{2}}{2}+\frac{z^{3}}{3}+\frac{z^{4}}{4}+... \right)\\&=\left( z+\frac{z^{2}}{2}+\frac{z^{3}}{3}+\frac{z^{4}}{4}+... \right)+z\left( z+\frac{z^{2}}{2}+\frac{z^{3}}{3}+\frac{z^{4}}{4}+... \right)+z^{2}\left( z+\frac{z^{2}}{2}+\frac{z^{3}}{3}+\frac{z^{4}}{4}+... \right)+...\\&=\left( z+\frac{z^{2}}{2}+\frac{z^{3}}{3}+\frac{z^{4}}{4}+... \right)+\left( z^{2}+\frac{z^{3}}{2}+\frac{z^{4}}{3}+\frac{z^{5}}{4}+... \right)+\left( z^{3}+\frac{z^{4}}{2}+\frac{z^{5}}{3}+\frac{z^{6}}{4}+.. \right)+...\\&=z+\left( 1+\frac{1}{2} \right)z^{2}+\left( 1+\frac{1}{2}+\frac{1}{3} \right)z^{3}+\left( 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4} \right)z^{4}+\left( 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5} \right)z^{5}+...\\&=H_{1}z+H_{2}z^{2}+H_{3}z^{3}+H_{4}z^{4}+H_{5}z^{5}+...=\sum\limits_{j=1}^{+\infty }{H_{j}z^{j}}.\end{align*}
Aso we know that
\[H_{n}=1+\frac{1}{2}+...+\frac{1}{n}=\int\limits_{0}^{1}{\left( 1+x+...+x^{n-1} \right)dx}=\int\limits_{0}^{1}{\frac{1-x^{n}}{1-x}dx}\]
with $\displaystyle H_0=0$ by convention. Consider the polylogarithm function,We know that
\[\frac{d}{dx}Li_{n}\left( x \right)=\frac{Li_{n-1}\left( x \right)}{x}.\]
Then
\begin{align*}I&=\int\limits_{0}^{1}{\ln x\ln ^{2}\left( 1-x \right)\frac{dx}{x}}=\int\limits_{0}^{1}{\frac{\ln \left( 1-x \right)}{1-x}\ln ^{2}xdx}=-\int\limits_{0}^{1}{\sum\limits_{j=1}^{+\infty }{H_{j}x^{j}}\ln ^{2}xdx}\\&=-\sum\limits_{j=1}^{+\infty }{H_{j}\int\limits_{0}^{1}{x^{j}\ln ^{2}xdx}}=-2\sum\limits_{j=1}^{+\infty }{\frac{H_{j}}{\left( j+1 \right)^{3}}}\end{align*}
as
\[K\left( j \right)=\int\limits_{0}^{1}{x^{j}dx}=\left( \frac{x^{j+1}}{j+1} \right)\left| _{0}^{1} \right.=\frac{1}{j+1}\Rightarrow K''\left( j \right)=\int\limits_{0}^{1}{x^{j}\ln ^{2}xdx}=-\frac{1}{\left( j+1 \right)^{2}}=\frac{2}{\left( j+1 \right)^{3}}.\]
Denote $S$ the sum$\displaystyle S=\sum\limits_{j=1}^{+\infty }{\frac{H_{j}}{\left( j+1 \right)^{3}}}.$
\begin{align*}S&=\sum\limits_{j=1}^{+\infty }{\frac{H_{j}}{\left( j+1 \right)^{3}}}=\sum\limits_{j=1}^{+\infty }{\left( \frac{\frac{1}{j+1}-\frac{1}{j+1}+H_{j}}{\left( j+1 \right)^{3}} \right)}\\&=\sum\limits_{j=1}^{+\infty }{\left( \frac{H_{j+1}-\frac{1}{j+1}}{\left( j+1 \right)^{3}} \right)}=\sum\limits_{j=1}^{+\infty }{\left( \frac{H_{j+1}}{\left( j+1 \right)^{3}}-\frac{1}{\left( j+1 \right)^{4}} \right)}\\&=\sum\limits_{j=0}^{+\infty }{\left( \frac{H_{j+1}}{\left( j+1 \right)^{3}}-\frac{1}{\left( j+1 \right)^{4}} \right)}=\sum\limits_{j=1}^{+\infty }{\left( \frac{H_{j}}{j^{3}}-\frac{1}{j^{4}} \right)}=-\zeta \left( 4 \right)+\sum\limits_{j=1}^{+\infty }{\frac{H_{j}}{j^{3}}}\\&=-\zeta \left( 4 \right)+\sum\limits_{j=1}^{+\infty }{\left( \int\limits_{0}^{1}{\frac{1-x^{j}}{1-x}}\frac{1}{j^{3}}dx \right)}=-\zeta \left( 4 \right)+\int\limits_{0}^{1}{\frac{1}{1-x}\sum\limits_{j=1}^{+\infty }{\left( \frac{1-x^{j}}{j^{3}} \right)}}dx\\&=-\zeta \left( 4 \right)+\int\limits_{0}^{1}{\frac{1}{1-x}\left( \zeta \left( 3 \right)-\sum\limits_{j=1}^{+\infty }{\frac{x^{j}}{j^{3}}} \right)}dx=-\zeta \left( 4 \right)+\int\limits_{0}^{1}{\frac{1}{1-x}\left( \zeta \left( 3 \right)-Li_{3}\left( x \right) \right)}dx.\end{align*}
Using integration by parts
Let $\displaystyle u=\zeta \left( 3 \right)-Li_{3}\left( x \right)$ and $\displaystyle dv=\frac{dx}{1?x}$.Then$\displaystyle du=-\frac{Li_{2}\left( x \right)}{x}$and$\displaystyle v=-\log \left| 1-x \right|$.So, the sum is equal to
\begin{align*}S&=-\zeta \left( 4 \right)+\left( Li_{3}\left( x \right)-\zeta \left( 3 \right) \right)\log \left| 1-x \right|\left| _{0}^{1} \right.-\int\limits_{0}^{1}{\log \left( 1-x \right)\frac{Li_{2}\left( x \right)}{x}}dx\\&=-\zeta \left( 4 \right)-\int\limits_{0}^{1}{Li_{2}\left( x \right)\frac{\log \left( 1-x \right)}{x}}dx.\end{align*}
Making the following change of variable
\begin{align*}u&=Li_{2}\left( x \right)\Rightarrow du=-\frac{\log \left( 1-x \right)}{x}dx\\S&=-\zeta \left( 4 \right)+\int\limits_{0}^{1}{Li_{2}\left( x \right)\left( Li_{2}\left( x \right) \right)^{'}}dx\\&=-\zeta \left( 4 \right)+\frac{1}{2}\left( Li_{2}^{2}\left( x \right) \right)\left| _{0}^{1} \right.=-\zeta \left( 4 \right)+\frac{1}{2}\left( Li_{2}^{2}\left( 1 \right)-Li_{2}^{2}\left( 0 \right) \right).\end{align*}
where $\displaystyle Li_{2}\left( x \right)=\sum\limits_{j=1}^{+\infty }{\frac{x^{j}}{j^{2}}}.$Then
\[S=-\zeta \left( 4 \right)+\frac{1}{2}\zeta ^{2}\left( 2 \right)=\frac{\pi ^{4}}{72}-\frac{\pi ^{4}}{90}=\frac{\pi ^{4}}{18}\left( \frac{1}{4}-\frac{1}{5} \right)=\frac{\pi ^{4}}{18}\left( \frac{1}{20} \right)=\frac{\pi ^{4}}{360}.\]
Finally we conclude
\[I=-2\sum\limits_{j=1}^{+\infty }{\frac{H_{j}}{\left( j+1 \right)^{3}}}=-2\left( -\zeta \left( 4 \right)+\frac{1}{2}\zeta ^{2}\left( 2 \right) \right)=-2\cdot \frac{\pi ^{4}}{360}=-\frac{\pi ^{4}}{180}.\]
2022年8月17日 00:28
Karnataka Download the 2nd PUC Blueprint 2022 Karnataka Board as per which the assessment was New Marking Scheme to be led from 2022. 2nd PUC Blueprint 2022 Peruse on to discover more about the 2nd PUC Blueprint 2022 The state board had Download the Karnataka 2nd PUC last, most important test Blueprint on February 2022.Karnataka Download the 2nd PUC Blueprint 2022 Karnataka Board as per which the assessment was New Marking Scheme to be led from 2022.