MatheMaticas中的巧妙范例[转载自哆嗒数学平台吧chzhn] - Eufisky - The lost book
逆神的数学分析题答案总算补全了
若干个著名的积分及文献

MatheMaticas中的巧妙范例[转载自哆嗒数学平台吧chzhn]

Eufisky posted @ 2014年11月25日 17:12 in 数学分析 with tags MatheMaticas , 1489 阅读

1.EllipticK 范例

在三维立点阵中随机访问并返回原点的概率:

1 - \[Pi]^2/

72 (6 + 2 Sqrt[3] + Sqrt[6]) EllipticK[

35 + 24 Sqrt[2] - 20 Sqrt[3] - 14 Sqrt[6]]^-2 // N

测试程序

BlockRandom[SeedRandom[11]; 
Count[Table[walkerPosition = {0, 0, 0}; steps = 0; 
While[steps == 0 || (steps < 100 && walkerPosition =!= {0, 0, 0}), 
steps++; 
walkerPosition = 
walkerPosition + {{1, 0, 0}, {-1, 0, 0}, {0, 1, 0}, {0, -1, 
0}, {0, 0, 1}, {0, 0, -1}}[[Random[Integer, {1, 6}]]]]; 
steps, {1000}], _?(# < 100 &)]]

2.Beta

贝塔函数倒数的$n\times n$ 矩阵的行列式为$n!$:

\[\left| {\begin{array}{*{20}{c}}{\frac{1}{{B\left( {1,1} \right)}}}&{\frac{1}{{B\left( {1,2} \right)}}}& \cdots &{\frac{1}{{B\left( {1,n} \right)}}}\\{\frac{1}{{B\left( {2,1} \right)}}}&{\frac{1}{{B\left( {2,2} \right)}}}& \cdots &{\frac{1}{{B\left( {2,n}\right)}}}\\{\frac{1}{{B\left( {3,1} \right)}}}&{\frac{1}{{B\left( {3,2} \right)}}}& \cdots &{\frac{1}{{B\left( {3,n} \right)}}}\\\cdots & \cdots & \cdots & \cdots \\{\frac{1}{{B\left( {n,1} \right)}}}&{\frac{1}{{B\left( {n,2} \right)}}}& \cdots &{\frac{1}{{B\left( {n,n} \right)}}}\end{array}} \right| = n!.\]

3.Binomial

希尔伯特矩阵的逆:\[{H_{ij}} = \frac{1}{{i + j - 1}}.\]

逆矩阵系数为

\[{\left( {{H^{ - 1}}} \right)_{ij}} = {\left( { - 1} \right)^{i + j}}\left( {i + j - 1} \right)\left( \begin{array}{l}n + i - 1\\n - j\end{array} \right)\left( \begin{array}{l}n + j - 1\\n - i\end{array} \right){\left( \begin{array}{l}i + j - 2\\i - 1\end{array} \right)^2}.\]

4.Erf

\[\frac{1}{{1 + \frac{1}{{1 + \frac{2}{{1 + \frac{3}{{1 + \frac{4}{{1 + \frac{5}{{1 + \frac{6}{{1 + \frac{7}{{1 + \frac{8}{{1 + \frac{9}{{1 +  \cdots }}}}}}}}}}}}}}}}}}}} = \sqrt {\frac{{\pi e}}{2}} \left( {1 - \rm{Erf}\left( {\frac{1}{{\sqrt 2 }}} \right)} \right).\]

5.HermiteH

广义 Lissajous 图形:

Block[{n = 11, m = 13},

ParametricPlot[{ Exp[-x^2/2] HermiteH[n, x]/Sqrt[2^n n!],

Exp[-x^2/2] HermiteH[m, x]/Sqrt[2^m m!]}, {x, -8, 8}]]

 

6.BesselI

等差数列的连分数表示

\[1 + \frac{1}{{2 + \frac{1}{{3 + \frac{1}{{4 + \frac{1}{{5 + \frac{1}{{6 +  \cdots }}}}}}}}}} = \frac{{{I_0}\left( 2 \right)}}{{{I_1}\left( 2 \right)}}.\]

代码ContinuedFraction[BesselI[0, 2]/BesselI[1, 2], 20]

输出

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}

7.Floor

数列$\{1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6\cdots\}的通项

\[{a_n} = \left[ {\sqrt {2k}  + \frac{1}{2}} \right].\]

8.Exp

(1)Exp迭代分形

DensityPlot[

Length @FixedPointList[

If[TrueQ[Abs[#] > 10.^5], Indeterminate, Exp[#/(x + I y)]] &,

x + I y, 10], {x, -1, 3}, {y, -1, 1}, MaxRecursion -> 4]

(2)黎曼- 维尔斯特拉斯函数任何位置不可微:

ParametricPlot[{Re[#], Im[#]} &@\!\(

\*UnderoverscriptBox[\(\[Sum]\), \(j = 1\), \(200\)]

\*FractionBox[

SuperscriptBox[\(E\), \(I\

\*SuperscriptBox[\(j\), \(3\)]\ \[CurlyPhi]\)],

SuperscriptBox[\(j\), \(2\)]]\), {\[CurlyPhi], 0, 2 \[Pi]}]

9.Tan

\[1 + \frac{1}{{1 + \frac{1}{{1 + \frac{1}{{3 + \frac{1}{{1 + \frac{1}{{5 + \frac{1}{{1 + \frac{1}{{7 +  \cdots }}}}}}}}}}}}}} = \tan 1.\]
10.Tanh
\[\frac{1}{{1 + \frac{1}{{3 + \frac{1}{{5 + \frac{1}{{7 + \frac{1}{{9 + \frac{1}{{11 + \frac{1}{{13 +  \cdots }}}}}}}}}}}}}} = \tanh 1.\]
11.sinc
\[\int_0^\infty  {\left( {\prod\limits_{k = 0}^n {\rm{sinc}\left( {\frac{x}{{2k + 1}}} \right)} } \right)dx}  = \pi \left( {n = 0,1,2,3,4,5,6} \right)\]

12.Factor

$x^n-1$在整数范围内充分分解后,几乎所有因式的系数不是1就是-1,但是也有一些例外,第一个例子是

\begin{align*}&{x^{105}} - 1 = ( - 1 + x)(1 + x + {x^2})(1 + x + {x^2} + {x^3} + {x^4})(1 + x + {x^2} + {x^3} + {x^4} + {x^5} + {x^6})\\&(1 - x + {x^3} - {x^4} + {x^5} - {x^7} + {x^8})(1 - x + {x^3} - {x^4} + {x^6} - {x^8} + {x^9} - x^{11} + x^{12})\\&(1 - x + {x^5} - {x^6} + {x^7} - {x^8} + x^{10} - {x^{11}} + {x^{12}} - {x^{13}} + {x^{14}} - {x^{16}} + {x^{17}} - {x^{18}} + {x^{19}} - {x^{23}} + {x^{24}})\\&(1 + x + {x^2} - {x^5} - {x^6} - 2{x^7} - {x^8} - {x^9} + {x^{12}} + {x^{13}} + {x^{14}} + {x^{15}} + {x^{16}} + {x^{17}} - {x^{20}} - {x^{22}} - {x^{24}} \\&- {x^{26}} - {x^{28}} + {x^{31}} + {x^{32}} + {x^{33}} + {x^{34}} + {x^{35}} + {x^{36}} - {x^{39}} - {x^{40}} - 2{x^{41}} - {x^{42}} - {x^{43}} + {x^{46}} + {x^{47}} + {x^{48}}).\end{align*}
Avatar_small
manabadi9.in 说:
2023年4月17日 22:50

recruitment 2017 notification.in is a initiative of professional writers who have come together for dedicated news coverage of latest happenings around the country (India). Our team comprises of professional writers & citizen journalists with diverse range of interest in Journalism who manabadi9.in are passionate about publishing the Education Updates with transparency in general public interest.Our reporting team intends to publish the Education & Recruitment Update for all age groups and present the true picture of the recent events with the inside coverage. Our objective would be to cater the requirements of people of all age groups as we intend to publish news classified into General, Political, Crime, Sports, Entertainment, Education and World News.


登录 *


loading captcha image...
(输入验证码)
or Ctrl+Enter