若干个著名的积分及文献 - Eufisky - The lost book
MatheMaticas中的巧妙范例[转载自哆嗒数学平台吧chzhn]
数学系自学视频课程

若干个著名的积分及文献

Eufisky posted @ 2014年12月02日 01:37 in 数学分析 with tags 积分计算 , 1177 阅读
1.Ising Integrals
 
1.Integrals of the Ising class (D.H. Bailey J.M. Borwein R.E.Crandall)

2.Hypergeometric forms for Ising-class integrals (D.H. Bailey, D. Borwein, J.M. Borwein,R.E. Crandall)

3. Finding General Explicit Formulas for Ising Integral Recursions (D.H. Bailey J.M. Borwein)

4.On Recurrences for Ising Integrals (Johannes Kepler University Linz, Austria)
2.watson Integrals
 
1.THREE TRIPLE INTEGRALS (G. N. WATSON)

2.WATSON'S THIRD INTEGRAL (Hannah Cairns)

3.ON THE EVALUATION OF GENERALIZED WATSON INTEGRALS (G. S. JOYCE AND I. J. ZUCKER)
\begin{align*}&{I_1} = \frac{1}{{{\pi ^3}}}\int_0^\pi  {\int_0^\pi  {\int_0^\pi  {\frac{{dudvdw}}{{1 - \cos u\cos v\cos w}}} } }  = \frac{{4{{\left[ {K\left( {\frac{1}{2}\sqrt 2 } \right)} \right]}^2}}}{{{\pi ^2}}} = \frac{{{\Gamma ^4}\left( {\frac{1}{4}} \right)}}{{4{\pi ^3}}}\\&{I_2} = \frac{1}{{{\pi ^3}}}\int_0^\pi  {\int_0^\pi  {\int_0^\pi  {\frac{{dudvdw}}{{3 - \cos u\cos v - \cos w\cos u - \cos u\cos v}}} } } \\&= \frac{{\sqrt 3 {{\left[ {K\left( {\frac{1}{4}\left( {\sqrt 6  - \sqrt 2 } \right)} \right)} \right]}^2}}}{{{\pi ^2}}} = \frac{{3{\Gamma ^6}\left( {\frac{1}{3}} \right)}}{{{2^{14/3}}{\pi ^4}}}\\&{I_3} = \frac{1}{{{\pi ^3}}}\int_0^\pi  {\int_0^\pi  {\int_0^\pi  {\frac{{dudvdw}}{{3 - \cos u - \cos v - \cos w}}} } } \\&= \frac{{4\left( {18 + 12\sqrt 2  - 10\sqrt 3  - 7\sqrt 6 } \right){{\left[ {K\left( {\left( {2 - \sqrt 3 } \right)\left( {\sqrt 3  - \sqrt 2 } \right)} \right)} \right]}^2}}}{{{\pi ^2}}}\\&= \frac{{\sqrt 6 }}{{96{\pi ^3}}}\Gamma \left( {\frac{1}{{24}}} \right)\Gamma \left( {\frac{5}{{24}}} \right)\Gamma \left( {\frac{7}{{24}}} \right)\Gamma \left( {\frac{{11}}{{24}}} \right).\end{align*}
3.Box Integrals
 
1.Box integrals (D.H. Bailey J.M. Borwein R.E. Crandall)

2.Higher-dimensional box integrals (Jonathan M. Borwein O-Yeat Chan y R. E. Crandall)

3.ADVANCES IN THE THEORY OF BOX INTEGRALS (D. H. BAILEY, J. M. BORWEIN, AND R. E. CRANDALL)
 
4.spin integrals
 
5.Lattice Sum
 
6.Euler Sum
 
1.Euler Sums and Contour Integral Representations (Philippe Flajolet and Bruno Salvy)

2.Experimental evaluation of Euler sums (D.H.Bailey J.M.Borwein andR.Girgensohn)

3.Evaluation of triple euler sums (Jonathan M. Borwein)

4.Harmonic sums,Mellin transforms and Integrals (J.A.M.Vermaseren,NIKHEF)
 
7.Meijer G function
 
8.Ramanujan-type series
 
9.PSLQ
 
来源:百度贴吧业余数学研究吧http://tieba.baidu.com/f?kw=%D2%B5%D3%E0%CA%FD%D1%A7%D1%D0%BE%BF

登录 *


loading captcha image...
(输入验证码)
or Ctrl+Enter