Eufisky - The lost book

2015年浙大数分题

1. 求 $\lim\limits_{n\rightarrow+\infty} \dfrac{(n^2+1)(n^2+2)..(n^2+n)}{(n^2-1)(n^2-2)..(n^2-n)}$.
 
2. 求$\displaystyle\lim\limits_{x \rightarrow 0+} \dfrac{1}{x^5}\int_0^x e^{-t^2}dt+\dfrac{1}{3}\dfrac{1}{x^2}-\dfrac{1}{x^4}$.
 
3. $\displaystyle I(r)=\oint \dfrac{y}{x^2+y^2}\mathrm{d}x-\frac{x}{x^2+y^2}\mathrm{d}y$, 其中曲线方程为$x^2+y^2+xy=r^2$, 取正方向, 求$\lim\limits_{r\rightarrow\infty}I(r)$.
 
4. 求$\displaystyle\int_{e^{-2n\pi}}^0 \sin\ln\dfrac{1}{x}\mathrm{d}x$.
 
5. 考察黎曼函数的连续性, 可微性, 黎曼可积性.
 
6. 在$\mathbb{R}^n$中, $f$为定义在某个区域上的一个函数, 有一阶连续偏导, 且偏导数有界. 
证明:
(1) 若$D$为凸区域证明$f$一致连续. 
(2)考察$D$不是凸区域的情况.
 
7. $\{f_n\}$为一个连续函数列, 且对于任意给定的$x$, $\{f_n(x)\}$有界, 证明存在一个小区间在此小区间内$f_n$一致有界.
 
8. (1) 证明$\Gamma(s)$在 $(0,\infty$内无穷次可微.
(2) 证明$\Gamma(s)$ , $\ln(\Gamma)$都是严格凸函数.
 
9. $f$ 二阶可微, 且$f$, $f'$, $f''$ 都大于等于$0$, 且存在一个正数$c$, $f''(x)\leq cf(x)$. 证明:
(1) $\displaystyle\lim\limits_{x\rightarrow-\infty}f(x)=0$;
(2) 证明存在正数$a$, 有$f'\leq af$,并求出$a$.
 
10. 证明 Fejer定理.
 
11. 设$f$在$[A, B]$上黎曼可积, $0<f<1$, 对于任意的$\varepsilon$, 构造一个函数$g$, 满足
(1) $g$是一个阶梯函数, 且取值只能为$0$或$1$.
(2) $\displaystyle\left| \int_a^b f-g \mathrm{d}x\right|<\varepsilon$, $a$, $b$ 属于$[A,B]$不等号关于$a$, $b$是一致的.

2015年武汉大学高等代数考研试题

源自:http://www.math.org.cn/forum.php?mod=viewthread&tid=31895&highlight=%E6%AD%A6%E6%B1%89%E5%A4%A7%E5%AD%A6

浙江大学2012年研究生入学考试高等代数试题参考解答

浙江大学2012年研究生入学考试高等代数试题参考解答
 
 
高等代数资源网
 
2013.8.2
1. 声明
您现在看到的这份文件来自http://www.52gd.org.本站原创的内容,采用创作共用组织(Creative Commons)的“公共领域”(\href{http://creativecommons.org/about/pdm}{Public Domain})许可。即放弃一切权利,全归公共领域。但涉及到其他版权人的摘录、转载、投稿、翻译等类内容不在此列。
 
本文的内容仅供学习参考之用,作者不对内容的正确性作任何承诺,作者不对因使用本文而造成的一切后果承担任何责任.
 
关于如何使用本文的建议:首先保证自己认真做了一遍题目,否则请不要查看本文.记住:
 
别人做是别人的,自己做才是自己的 .
作者水平有限,错误不可避免,欢迎您来信指出:\href{mailto:www52gdorg@163.com}{www52gdorg@163.com}.
 
2. 试题

每题15分.

 

一.设$E$是$n$阶单位矩阵,

$$M=\begin{pmatrix}0&E\\-E&0\end{pmatrix},$$

矩阵$A$满足$A^{T}MA=M.$证明$A$的行列式等于1.

 

二.设$A$是$n$阶幂等矩阵,满足

 

(1)$A=A_{1}+\cdots+A_{s};$

 

(2)$r(A)=r(A_{1})+\cdots+r(A_{s}).$

 

证明:所有的$A_{i}$都相似于一个对角阵,$A_{i}$的特征值之和等于矩阵$A_{i}$的秩.

 

三.设$\phi$是$n$维欧氏空间的正交变换,证明:$\phi$最多可以表示为$n+1$个镜面反射的复合.

 

四.设$A$是$n$阶复矩阵,证明存在常数项等于0的多项式$g(\lambda),h(\lambda)$使得$g(A)$是可以对角化的矩阵,$h(A)$是幂零矩阵,且$A=g(A)+h(A).$

 

五.设$A=\begin{pmatrix}3&2&-2\\k&-1&-k\\4&2&-3\end{pmatrix}.$(i)当$k$为何值时,存在矩阵$P$使得$P^{-1}AP$为对角矩阵?并求出这样的矩阵$P$和对角矩阵.(ii)求$k=2$时矩阵$A$的Jordan标准形.

 

六.令二次型$f(x_{1},\cdots,x_{n})=\sum_{i=1}^{m}(a_{i1}x_{1}+\cdots+a_{in}x_{n})^{2}.$

 

(i)求此二次型的方阵.

 

(ii)当$a_{ij}$均为实数时,给出此二次型为正定的条件.

 

七.设$V$和$W$是数域$K$上的线性空间,$Hom_{K}(V,W)$表示$V$到$W$的所有线性映射组成的线性空间.证明:对$f,g\in Hom_{K}(V,W),$若$Imf\cap Img=\{0\},$则$f,g$在$Hom_{K}(V,W)$中是线性无关的.

 

八.令线性空间$V=Imf\oplus W,$其中$W$是线性变换$f$的不变子空间.

 

(i)证明$W\subseteq Kerf;$

 

(ii)证明若$V$是有限维线性空间,则$W=Kerf;$

 

(iii)举例说明,当$V$是无限维的,可能有$W\subseteq Ker f,$且$W\neq Kerf.$

 

九.设$A=\begin{pmatrix}1&0&-1&2&1\\-1&1&3&-1&0\\-2&1&4&-1&3\\3&-1&-5&1&-6\end{pmatrix}.$

 

(i)求$5\times 5$阶秩为2的矩阵$M,$使得$AM=0;$

 

(ii)假如$B$是满足$AB=0$的$5\times5$阶矩阵,证明:秩$\mathrm{rank\,}(B)\leq2.$

 

十.令$T$是有限维线性空间$V$的线性变换,设$W$是$V$的$T-$不变子空间.那么$T|_{W}$的最小多项式整除$T$的最小多项式.

 

 

 

3. 参考解答

一.设$E$是$n$阶单位矩阵,

$$M=\begin{pmatrix}0&E\\-E&0\end{pmatrix},$$

矩阵$A$满足$A^{T}MA=M.$证明$A$的行列式等于1.

 

\textbf{证明:}(法1)将$A$分块为

$$A=\begin{pmatrix}A_{1}&A_{2}\\A_{3}&A_{4}\end{pmatrix}$$

由$A^{T}MA=M$有

$$\begin{aligned}-A_{2}A_{1}^{T}+A_{1}A_{2}^{T}&=&0\\-A_{2}A_{3}^{T}+A_{1}A_{4}^{T}&=&I\\\end{aligned}$$

 

若$A_{1}$可逆,由$A$的分块可得$$|A|=|A_{1}||A_{4}-A_{3}A_{1}^{-1}A_{2}|$$由上面第一式可得$$A_{2}=A_{1}A_{2}^{T}(A_{1}^{-1})^{T}$$

代入第二式可得

$$A_{4}-A_{3}A_{1}^{-1}A_{2}=(A_{1}^{-1})^{T}$$

从而可得$|A|=1$.

 

当$A_{1}$不可逆时,考虑矩阵$A_{1}+tE,$则存在无穷多$t$的值使得$A_{1}+tE$可逆(这是因为$|A_{1}+tE|$是关于$t$的一个多项式,只能有有限个根.),由前面的证明有

$$1=\begin{vmatrix}A_{1}+tE&A_{2}\\A_{3}&A_{4}\end{vmatrix}.$$

此式两边是关于$t$的多项式,且有无穷多$t$的值使得等式成立,从而等式恒成立.令$t=0$可得.

 

(法2)博士数学论坛(\url{www.math.org.cn})的mxcandy提供.

 

由$A^{T}MA=M$有

$$M(\lambda E-A)=\lambda M-MA=\lambda A^{T}MA-MA=(\lambda A^{T}-E)MA.$$

两边取行列式,由$|M|=1\neq0$得

$$|\lambda E-A|=|A||\lambda A^{T}-E|.$$

注意到$A$是$2n$阶矩阵,以及矩阵的转置行列式不变有

$$|\lambda A^{T}-E|=|E-\lambda A^{T}|=|(E-\lambda A^{T})^{T}|=|E-\lambda A|.$$

于是

$$|\lambda E-A|=|A||\lambda A^{T}-E|=|A||E-\lambda A|.$$

记$A$的特征多项式$|\lambda E-A|=f(\lambda),$则由上式有

$$f(\lambda)=|\lambda E-A|=|A|\lambda^{2n}f(\dfrac{1}{\lambda}).\eqno(*)$$

考虑$\lambda=1,$设$2n$次多项式$f(\lambda)$有分解式

$$f(\lambda)=(\lambda-1)^{m}g(\lambda),g(1)\neq0,0\leq m\leq 2n.$$

已知$A^{T}MA=M,$两边取行列式,可得$|A|^{2}=1,$从而$A$可逆,故

$$MA=(A^{T})^{-1}M,$$

由平滑性或者归纳法可得,对任意自然数$k$有

$$M(E-A)^{k}=(E-(A^{T})^{-1})^{k}M,$$

从而

$$M(E-A)^{2k}=M(E-A)^{k}(E-A)^{k}=(E-(A^{T})^{-1})^{k}M(E-A)^{k}=-(A^{T})^{-k}(E-A)^{k}M(E-A)^{k}.$$

由$M^{T}=-M$知,$(E-A)^{k}M(E-A)^{k}$反对称,注意到$|M|=1,$从而

$$\mathrm{rank\,}((E-A)^{2k})=\mathrm{rank\,}((E-A)^{k}M(E-A)^{k}).$$

由于反对称矩阵的秩为偶数,从而$\mathrm{rank\,}((E-A)^{2k})$为偶数.特别的,任取$2k\geq m,$则特征值$\lambda=1$的代数重数$m$为偶数,即

$$m=2n-\mathrm{rank\,}((E-A)^{2k})\triangleq 2p,2k\geq m,0\leq p\leq n.$$

把$f(\lambda)=(\lambda-1)^{2p}g(\lambda)$代入到(*)式,得

$$(\lambda-1)^{2p}g(\lambda)=|A|\lambda^{2n}(\dfrac{1}{\lambda}-1)^{2p}g(\dfrac{1}{\lambda}),$$

$$g(\lambda)=|A|\lambda^{2n-2k}g(\dfrac{1}{\lambda}),$$

令$\lambda=1,$并注意到$g(1)\neq0,$可得$|A|=1.$

 

注1:满足题目条件的矩阵$A$称为辛矩阵.

 

注2:由上述证明知:辛矩阵的特征多项式自反,特征值互倒成对,$\lambda=\pm1$代数重数为偶数.

 

(法3)许以超,线性代数与矩阵论(第二版).高等教育出版社.P329.

 

(法4)许以超,线性代数与矩阵论(第二版).高等教育出版社.P405.

 

(法5)高等代数中的一些问题.博士数学论坛(\url{www.math.org.cn})xida.P7.

二.设$A$是$n$阶幂等矩阵,满足

 

(1)$A=A_{1}+\cdots+A_{s};$

 

(2)$r(A)=r(A_{1})+\cdots+r(A_{s}).$

 

证明:所有的$A_{i}$都相似于一个对角阵,$A_{i}$的特征值之和等于矩阵$A_{i}$的秩.

 

\textbf{证明:}只需证明$A_{i}$是幂等矩阵.利用$n$阶矩阵$C$是幂等矩阵的充要条件为$r(C)+r(C-E)=n,$只需证明$r(A_{i}-E)=n-r(A_{i}).$利用矩阵秩的不等式

$$|r(A)-r(B)|\leq r(A\pm B)\leq r(A)+r(B)$$

以及题目条件有

$$\begin{aligned}n-r(A_{i})\leq r(A_{i}-E)&=r(A-E-(A_{1}+\cdots+A_{i-1}+A_{i+1}+\cdots+A_{s}))\\&\leq r(A-E)+r(A_{1}+\cdots+A_{i-1}+A_{i+1}+\cdots+A_{s})\\&\leq r(A-E)+r(A_{1})+\cdots+r(A_{i-1})+r(A_{i+1})+\cdots+r(A_{s})\\&=n-r(A)+r(A)-r(A_{i})\\&=n-r(A_{i}).\end{aligned}$$

从而$r(A_{i}-E)=n-r(A_{i}).$

 

三.设$\phi$是$n$维欧氏空间的正交变换,证明:$\phi$最多可以表示为$n+1$个镜面反射的复合.

 

\textbf{证明:}(法1)设$\alpha$是$n$维欧氏空间$V$中的单位向量,定义线性变换

$$\sigma(\beta)=\beta-(\beta,\alpha)\alpha,\forall\beta\in V,$$

则$\sigma$是$V$的正交变换,称为镜面反射(镜像变换).计算可得$\sigma^{2}=I$(恒等变换).

 

设$\alpha_{1},\alpha_{2}$是$n$维欧氏空间$V$中的两个长度相等的不同向量,则存在镜面反射$\sigma$使得$\sigma(\alpha_{1})=\alpha_{2}.$

实际上,令$\alpha=\dfrac{\alpha_{1}-\alpha_{2}}{|\alpha_{1}-\alpha_{2}|},$定义$\sigma(\beta)=\beta-(\beta,\alpha)\alpha,\forall\beta\in V$即可.

 

下面证明原问题.对空间的维数$n$用数学归纳法.

 

当$n=1$时,设$e_{1}$是$V$的单位向量,则$V=L(e_{1}).$由于$\phi(e_{1})\in V,$故存在实数$\lambda$使得$\phi(e_{1})=\lambda e_{1},$由$\phi$是正交变换可得

$$1=(e_{1},e_{1})=(\phi(e_{1}),\phi(e_{1}))=\lambda^{2}(e_{1},e_{1})=\lambda^{2},$$

因此$\lambda=\pm1.$令

$$\tau(\alpha)=\alpha-2(\alpha,e_{1})e_{1},\forall\alpha\in V,$$

则$\tau$是镜面反射,且当$\lambda=1$时,对$\forall\alpha\in V,$设$\alpha=ke_{1},k\in R$则

$$\phi(\alpha)=k\phi(e_{1})=ke_{1},\forall\alpha=ke_{1}=\alpha,\in V,$$

即$\phi$是恒等变换.而

$$\tau^{2}(\alpha)=k\tau^{2}(e_{1})=k\tau(-e_{1})=ke_{1}=\alpha,$$

即$\tau^{2}$也是恒等变换,从而$\phi=\tau^{2}.$而当$\lambda=-1$时,显然$\phi=\tau.$

 

假设结论对$n-1$维欧氏空间成立,对$n$维欧氏空间$V$的一正交变换$\phi,$若$\phi=I,$则对$V$的任一镜面反射$\sigma$有$\phi=I=\sigma^{2}.$若$\phi\neq I,$则存在$V$的单位向量$e$使得$\phi(e)=\eta\neq e,$由于$|\eta|=|\phi(e)|,$从而存在$V$的镜面反射$\tau$使得$$\tau(\eta)=e.$$

于是$$\tau(\phi(e))=e.$$

令$W=L(e),$由于$\tau\phi$仍为正交变换,故$W^{\bot}$是$\tau\phi$的$n-1$维不变子空间,且$\tau\phi|_{W^{\bot}}$为正交变换.由归纳假设,在$W^{\bot}$中存在单位向量$\alpha_{1},\alpha_{2},\cdots,\alpha_{k},$它们分别决定$W^{\bot}$的镜面反射$\sigma_{1},\sigma_{2},\cdots,\sigma_{k}$使得

$$\tau\phi|_{W^{\bot}}=\sigma_{1}\sigma_{2}\cdots\sigma_{k},$$

现将$\sigma_{i}$的定义扩大到$V,$即补充定义$\sigma_{i}(e)=e.$则$\sigma_{i}$即为$\alpha_{i}$决定的$V$的镜面反射.这是因为$\forall\alpha\in V,$设$\alpha=\beta_{1}+\beta_{2},\beta_{1}=ke\in W=L(e),\beta_{2}\in W^{\bot},$注意到$(\beta_{1},\alpha_{i})=0,$则

 

$$\begin{aligned}\sigma_{i}(\alpha)&=\sigma_{i}(\beta_{1})+\sigma(\beta_{2})\\&=\beta_{1}+\beta_{2}-2(\beta_{2},\alpha_{i})\alpha_{i}\\&=\alpha-2(\alpha,\alpha_{i})\alpha_{i}.\end{aligned}$$

现在显然有$\sigma_{1}\sigma_{2}\cdots\sigma_{k}(\beta_{1})=\beta_{1},$这是因为$\tau\phi(e)=e,$故$\tau\phi(\beta_{1})=\beta_{1}.$从而

 

$$\begin{aligned}\tau\phi(\alpha)&=\tau\phi(\beta_{1})+\tau\phi(\beta_{2})\\&=\beta_{1}+\sigma_{1}\sigma_{2}\cdots\sigma_{k}(\beta_{2})\\&\sigma_{1}\sigma_{2}\cdots\sigma_{k}(\beta_{1})+\sigma_{1}\sigma_{2}\cdots\sigma_{k}(\beta_{2})\\&=\sigma_{1}\sigma_{2}\cdots\sigma_{k}(\alpha)\end{aligned}$$

 

从而$\tau\phi=\sigma_{1}\sigma_{2}\cdots\sigma_{k}.$注意到$\tau^{2}=I,$有

$$\phi=\tau\sigma_{1}\sigma_{2}\cdots\sigma_{k}.$$

 

(法2)$n$阶矩阵$M=E-2\alpha\alpha^{T},$其中$\alpha$是$n$维实列向量,且$\alpha^{T}\alpha=1.$则矩阵$M$是正交矩阵,称为镜像矩阵.容易验证$M^{2}=E.$即单位矩阵是两个镜像矩阵之积.

 

设$\alpha,\beta$是两个不同的$n$维实列向量,且$|\alpha|=|\beta|,$则存在实镜像矩阵$M$使得$M\alpha=\beta.$实际上,令$\alpha=\dfrac{\alpha-\beta}{|\alpha-\beta|},M=E-2\alpha\alpha^{T}$即可.

 

可以证明欧氏空间中的线性变换$\phi$是镜面反射的充要条件是$\phi$在一组标准正交基下的矩阵为镜像矩阵.

 

这样要证明原问题,只需证明任意$n$阶实正交矩阵$A$可以分解不超过$n+1$个镜像矩阵之积即可.

 

对矩阵的阶数$n$用数学归纳法.

$n=1$时,结论显然成立.

 

假设结论对$n-1$阶矩阵成立,将$n$阶正交矩阵$A$按列分块为

$$A=(\alpha_{1},\alpha_{2},\cdots,\alpha_{n}),$$

则$|\alpha_{1}|=1,$从而存在镜像矩阵$M_{1}$使得$M_{1}\alpha_{1}=(1,0,\cdots,0)^{T},$注意到$M_{1}A$还是正交矩阵,必有

 

 

$$M_{1}A=M_{1}(\alpha_{1},\alpha_{2},\cdots,\alpha_{n})=(M_{1}\alpha_{1},M_{1}\alpha_{2},\cdots,M_{1}\alpha_{n})=\begin{pmatrix}1&0&\cdots&0\\0& &  &\\\vdots&&Q_{1}&\\0&&&\end{pmatrix}$$

 

 

容易验证$Q_{1}$也是正交矩阵,从而由归纳假设,存在$n-1$阶镜像矩阵$M_{2},\cdots,M_{k}$使得$$Q_{1}=M_{2}\cdots M_{k},$$

于是

$$A=M_{1}^{-1}\begin{pmatrix}1&0&\cdots&0\\0& &  &\\\vdots&&Q_{1}&\\0&&&\end{pmatrix}=M_{1}^{-1}\begin{pmatrix}1&\\&M_{2}\cdots M_{k}\end{pmatrix}=M_{1}^{-1}\begin{pmatrix}1&\\&M_{2}\end{pmatrix}\cdots\begin{pmatrix}1&\\&M_{k}\end{pmatrix}.$$

 

易知$\begin{pmatrix}1&\\&M_{i}\end{pmatrix}$都是镜像矩阵.

 

 

 

四.设$A$是$n$阶复矩阵,证明存在常数项等于0的多项式$g(\lambda),h(\lambda)$使得$g(A)$是可以对角化的矩阵,$h(A)$是幂零矩阵,且$A=g(A)+h(A).$

 

\textbf{证明:}等我看看能否找到一个好的方法.

 

五.设$A=\begin{pmatrix}3&2&-2\\k&-1&-k\\4&2&-3\end{pmatrix}.$(i)当$k$为何值时,存在矩阵$P$使得$P^{-1}AP$为对角矩阵?并求出这样的矩阵$P$和对角矩阵.(ii)求$k=2$时矩阵$A$的Jordan标准形.

 

\textbf{证明:}由于

$$|A-\lambda E|=\begin{vmatrix}3-\lambda&2&-2\\k&-1-\lambda&-k\\4&2&-3-\lambda\end{vmatrix}=-(\lambda+1)^{2}(\lambda-1),$$

故$A$的特征值为$$\lambda_{1}=-1(\mbox{二重}),\lambda_{2}=1.$$

 

(i)存在矩阵$P$使得$P^{-1}AP$为对角矩阵的充要条件是特征值的代数重数等于几何重数,即$r(A-\lambda_{1}E)=1,$而

$$A-\lambda_{1}E=\begin{pmatrix}4&2&-2\\k&0&-k\\4&2&-2\end{pmatrix},$$

 

从而$k=0.$

$P$可以是

$$P=\begin{pmatrix}1&1&1\\-2&0&0\\0&2&1\\\end{pmatrix},$$此时$P^{-1}AP=diag(-1,-1,1).$

 

(2)$k=2$时

 

$$\lambda E-A=\begin{pmatrix}\lambda-3&-2&2\\-2&\lambda+1&2\\-4&-2&\lambda+3\end{pmatrix}\rightarrow\begin{pmatrix}1&&\\&1&\\&&(\lambda+1)^{2}(\lambda-1)\end{pmatrix},$$

 

所以$A$的Jordan标准形为$$\begin{pmatrix}-1&1&\\&-1&\\&&1\end{pmatrix}.$$

 

六.令二次型$f(x_{1},\cdots,x_{n})=\sum_{i=1}^{m}(a_{i1}x_{1}+\cdots+a_{in}x_{n})^{2}.$

 

(i)求此二次型的方阵.

 

(ii)当$a_{ij}$均为实数时,给出此二次型为正定的条件.

 

\textbf{证明:}(i)由于

$$(a_{i1}x_{1}+\cdots+a_{in}x_{n})^{2}=(x_{1},\cdots,x_{n})\begin{pmatrix}a_{i1}\\\vdots\\a_{in}\end{pmatrix}\begin{pmatrix}a_{i1}&\cdots&a_{in}\end{pmatrix}\begin{pmatrix}x_{1}\\\vdots\\x_{n}\end{pmatrix},$$

 

\begin{align*}f(x_{1},\cdots,x_{n})&=\sum_{i=1}^{m}(a_{i1}x_{1}+\cdots+a_{in}x_{n})^{2}\\&=\sum_{i=1}^{n}(x_{1},\cdots,x_{n})\begin{pmatrix}a_{i1}\\\vdots\\a_{in}\end{pmatrix}\begin{pmatrix}a_{i1}&\cdots&a_{in}\end{pmatrix}\begin{pmatrix}x_{1}\\\vdots\\x_{n}\end{pmatrix}\\&=(x_{1},\cdots,x_{n})\begin{pmatrix}\sum_{i=1}^{n}a_{i1}^{2}&\cdots&\sum_{i=1}^{n}a_{i1}a_{in}\\\vdots&\vdots&\vdots\\\sum_{i=1}^{n}a_{in}a_{i1}&\cdots&\sum_{i=1}^{n}a_{in}^{2}\end{pmatrix}\begin{pmatrix}x_{1}\\\vdots\\x_{n}\end{pmatrix}\end{align*}.

 

若记$A=(a_{ij})_{n\times n},$则$f(x_{1},\cdots,x_{n})=(x_{1},\cdots,x_{n})(A^{T}A)\begin{pmatrix}x_{1}\\\vdots\\x_{n}\end{pmatrix}.$

 

故所求矩阵为$A^{T}A.$

 

(2)当$a_{ij}$为实数时,$A^{T}A$是半正定的,故$f(x_{1},\cdots,x_{n})=(x_{1},\cdots,x_{n})(A^{T}A)\begin{pmatrix}x_{1}\\\vdots\\x_{n}\end{pmatrix}$

正定的充要条件是$r(A^{T}A)=n.$而$r(A^{T}A)=r(A),$故原二次型正定的充要条件是$r(A)=n.$

 

七.设$V$和$W$是数域$K$上的线性空间,$Hom_{K}(V,W)$表示$V$到$W$的所有线性映射组成的线性空间.证明:对$f,g\in Hom_{K}(V,W),$若$Imf\cap Img=\{0\},$则$f,g$在$Hom_{K}(V,W)$中是线性无关的.

 

\textbf{证明:}注:这里应该假设$f\neq0,g\neq0.$否则题目无意义.

反证法.假设$f=kg,k\in K,$由于$f\neq0,$故存在$\alpha\in V,$使得$0\neq f(\alpha)\in Im f\subset W,$此时

$$o\neq \dfrac{1}{k}f(\alpha)=g(\alpha)\in Img,$$

注意到$Img$是$W$的字空间,从而$f(\alpha)\in Img,$这样$0\neq f(\alpha)\in Imf\cap Img.$这与条件矛盾.

 

八.令线性空间$V=Imf\oplus W,$其中$W$是线性变换$f$的不变子空间.

 

(i)证明$W\subseteq Kerf;$

 

(ii)证明若$V$是有限维线性空间,则$W=Kerf;$

 

(iii)举例说明,当$V$是无限维的,可能有$W\subseteq Ker f,$且$W\neq Kerf.$

 

\textbf{证明:}(i)$\forall\alpha\in W,$则由条件有

$$f(\alpha)\in Imf\cap W,$$

注意到$V=Imf\oplus W,$从而$Imf\cap W=\{0\},$故$f(\alpha)=0.$即$\alpha\in Kerf.$这就证明了$W\subseteq Kerf.$

 

(2)由(i),要证明$W=Kerf,$只需证明$dim W=dim Kerf.$而由$V=Imf\oplus W$以及维数公式$dimV=dim Imf+dim Kerf$有

$$dim W=dimV-dim Imf=dim Kerf.$$

从而结论成立.

 

(3)例:$V=P[x]$是数域$P$上关于$x$的一元多项式的全体,则$V$是无限维线性空间,$f(p(x))=p'(x)$为$V$上的求导线性变换,则

此时$Imf=V,Kerf=P,W=\{0\}.$

 

九.设$A=\begin{pmatrix}1&0&-1&2&1\\-1&1&3&-1&0\\-2&1&4&-1&3\\3&-1&-5&1&-6\end{pmatrix}.$

 

(i)求$5\times 5$阶秩为2的矩阵$M,$使得$AM=0;$

 

(ii)假如$B$是满足$AB=0$的$5\times5$阶矩阵,证明:秩$\mathrm{rank\,}(B)\leq2.$

 

\textbf{证明:}将$M$按列分块为

$$M=(m_{1},m_{2},m_{3},m_{4},m_{5}),$$

$$0=AM=A(m_{1},m_{2},m_{3},m_{4},m_{5})=(Am_{1},Am_{2},Am_{3},Am_{4},Am_{5}),$$

即$Am_{i}=0,i=1,2,3,4,5.$此即$m_{i}$是线性方程组$Ax=0$的解.

 

(i)求解$Ax=0$可得其一个基础解系为

$$\alpha_{1}=(-1,2,1,0)^{T},\alpha_{2}=(3,1,0,-2,0)^{T}.$$

故可取

$$M=(\alpha_{1},\alpha_{2},\alpha_{1},\alpha_{1},\alpha_{1}).$$

 

(ii)注意到$B$的列向量是方程组$Ax=0$的解,而方程组的任一解皆可由其基础解系线性表示,故$B$的列向量可由$\alpha_{1},\alpha_{2}$线性表示,故$r(B)\leq2.$

十.令$T$是有限维线性空间$V$的线性变换,设$W$是$V$的$T-$不变子空间.那么$T|_{W}$的最小多项式整除$T$的最小多项式.

 

\textbf{证明:}易知$W$是平凡子空间,即$W=\{0\}\mbox{或}W=V$时,结论成立.

 

下面假设$0<dimW=r<dimV=n,$取$W$的一组基$\alpha_{1},\cdots,\alpha_{r},$将其扩充为$V$的一组基$\alpha_{1},\cdots,\alpha_{r},\alpha_{r+1},\cdots,\alpha_{n},$由$W$是$T$的不变子空间,则可知$T$在上述基下的矩阵为

$$T(\alpha_{1},\cdots,\alpha_{r},\alpha_{r+1},\cdots,\alpha_{n})=(\alpha_{1},\cdots,\alpha_{r},\alpha_{r+1},\cdots,\alpha_{n})\begin{pmatrix}A_{r\times r}&B\\0&C_{(n-r)\times(n-r)}\end{pmatrix}.$$

设$T|_{W},T$的最小多项式分别为$m_{T}(x),m(x),$则

$$0=m(\begin{pmatrix}A_{r\times r}&B\\0&C_{(n-r)\times(n-r)}\end{pmatrix})=\begin{pmatrix}m(A_{r\times r})&*\\0&m(C_{(n-r)\times(n-r)})\end{pmatrix},$$

从而$m(A)=0,$即$m(x)$是$T|_{W}$的零化多项式,从而$m_{T}(x)|m(x).$

转载自:http://www.52gd.org/?p=414

北京大学数学科学学院2015年直博生摸底考试试题解答

这份试题本来已经写好答案了,但因为电脑的事,里面文件都没了。下面重新给出解答:


1.(90分) 设$y=f(x)$是$\mathbb{R}$上的$C^\infty$函数,对任意整数$k\geq0$,记$M_k=\sup_{x\in\mathbb{R}}|f^{(k)}(x)|$.设$m$和$n$为两整数, $0\leq m<n$,试分别就下列情况,给出你的结论和证明.
(1)如果$M_m$和$M_n$均有界,那么对哪些整数$k$, $M_k$有界?对哪些整数$k$, $M_k$可以无界?
(2)如果$\lim_{x\to+\infty}|f^{(m)}(x)|$存在有限极限,而$M_n$有界,则对哪些自然数$k$,极限$\lim_{x\to+\infty}|f^{(k)}(x)|$也存在极限?
(3)如果$\lim_{x\to+\infty}|f^{(m)}(x)|$和$\lim_{x\to+\infty}|f^{(n)}(x)|$都存在有限极限,则对哪些自然数$k$,极限$\lim_{x\to+\infty}|f^{(k)}(x)|$也存在极限?
 

2.(30分) 判断级数$\sum\nolimits_{n = 2}^{ + \infty } {\frac{{{{\left( { - 1} \right)}^n}}}{{\sqrt n  + {{\left( { - 1} \right)}^{\left[ {\sqrt n } \right]}}}}}$的敛散性,其中$[x]$表示$x$的取整.

enlightened证:\begin{align*}\sum\limits_{n = 2}^{ + \infty } {\frac{{{{\left( { - 1} \right)}^n}}}{{\sqrt n  + {{\left( { - 1} \right)}^{\left[ {\sqrt n } \right]}}}}}  &= \sum\limits_{n = 2}^{ + \infty } {\frac{{{{\left( { - 1} \right)}^n}\left( {\sqrt n  - {{\left( { - 1} \right)}^{\left[ {\sqrt n } \right]}}} \right)}}{{n - 1}}} \\&= \sum\limits_{n = 2}^{ + \infty } {\frac{{{{\left( { - 1} \right)}^n}\sqrt n }}{{n - 1}}}  - \sum\limits_{n = 2}^{ + \infty } {\frac{{{{\left( { - 1} \right)}^{n + \left[ {\sqrt n } \right]}}}}{{n - 1}}}.\end{align*}

由Leibniz判别法知,级数\[\sum\limits_{n = 2}^{ + \infty } {\frac{{{{\left( { - 1} \right)}^n}\sqrt n }}{{n - 1}}}  = \sum\limits_{n = 2}^{ + \infty } {\frac{{{{\left( { - 1} \right)}^n}}}{{\sqrt n  - \frac{1}{{\sqrt n }}}}} \]收敛.
当$k \le \sqrt n  < k + 1$,即${k^2} \le n < {\left( {k + 1} \right)^2}$时, ${\left[ {\sqrt n } \right]}=k$,则
\begin{align*}&\sum\limits_{n = 2}^{ + \infty } {\frac{{{{\left( { - 1} \right)}^{n + \left[ {\sqrt n } \right]}}}}{{n - 1}}}  =  - \frac{1}{2} + \sum\limits_{k = 2}^{ + \infty } {\sum\limits_{n = {k^2}}^{{k^2} + 2k} {\frac{{{{\left( { - 1} \right)}^{n + k}}}}{{n - 1}}} }  =  - \frac{1}{2} + \sum\limits_{k = 2}^{ + \infty } {{{\left( { - 1} \right)}^k}\sum\limits_{n = {k^2}}^{{k^2} + 2k} {\frac{{{{\left( { - 1} \right)}^n}}}{{n - 1}}} } \\&=  - \frac{1}{2} + \sum\limits_{k = 2}^{ + \infty } {{{\left( { - 1} \right)}^k}\sum\limits_{n = {k^2}}^{{k^2} + 2k} {{{\left( { - 1} \right)}^{{k^2}}}\left[ {\left( {\frac{1}{{{k^2} - 1}} + \frac{1}{{{k^2} + 1}} +  \cdots  + \frac{1}{{{k^2} + 2k - 1}}} \right)} \right.} } \\&\left. { - \left( {\frac{1}{{{k^2}}} + \frac{1}{{{k^2} + 2}} +  \cdots  + \frac{1}{{{k^2} + 2k - 2}}} \right)} \right] =  - \frac{1}{2} + \sum\limits_{k = 2}^{ + \infty } {\left[ {\left( {\frac{1}{{{k^2} - 1}} + \frac{1}{{{k^2} + 1}} +  \cdots  + \frac{1}{{{k^2} + 2k - 1}}} \right)} \right.} \\&\left. { - \left( {\frac{1}{{{k^2}}} + \frac{1}{{{k^2} + 2}} +  \cdots  + \frac{1}{{{k^2} + 2k - 2}}} \right)} \right] \le  - \frac{1}{2} + \sum\limits_{k = 2}^{ + \infty } {\left[ {\left( {\frac{{k + 1}}{{{k^2} - 1}} - \frac{k}{{{k^2} + 2k - 2}}} \right)} \right.} \\&\le  - \frac{1}{2} + \sum\limits_{k = 2}^{ + \infty } {\left[ {\left( {\frac{1}{{k - 1}} - \frac{1}{{k + 2}}} \right)} \right.}  =  - \frac{1}{2} + 1 + \frac{1}{2} + \frac{1}{3} = \frac{4}{3}\end{align*}
\begin{align*}{a_n} &= \left( {\frac{1}{{{k^2} - 1}} + \frac{1}{{{k^2} + 1}} +  \cdots  + \frac{1}{{{k^2} + 2k - 1}}} \right) - \left( {\frac{1}{{{k^2}}} + \frac{1}{{{k^2} + 2}} +  \cdots  + \frac{1}{{{k^2} + 2k - 2}}} \right)\\&= \left( {\frac{1}{{{k^2} - 1}} - \frac{1}{{{k^2}}}} \right) + \left( {\frac{1}{{{k^2} + 1}} - \frac{1}{{{k^2} + 2}}} \right) +  \cdots  + \left( {\frac{1}{{{k^2} + 2k - 3}} - \frac{1}{{{k^2} + 2k - 2}}} \right) + \frac{1}{{{k^2} + 2k - 1}}\\&\ge \frac{1}{{{k^2} + 2k - 1}} > 0.\end{align*}
故\[\sum\limits_{n = 2}^{ + \infty } {\frac{{{{\left( { - 1} \right)}^{n + \left[ {\sqrt n } \right]}}}}{{n - 1}}} \]收敛,从而数列$\sum\nolimits_{n = 2}^{ + \infty } {\frac{{{{\left( { - 1} \right)}^n}}}{{\sqrt n  + {{\left( { - 1} \right)}^{\left[ {\sqrt n } \right]}}}}}$亦收敛.laugh

3.(30分) 证明\[\int_0^1 {\int_0^1 {\frac{1}{{{{\left( {xy} \right)}^{xy}}}}dxdy} }  = \int_0^1 {\frac{1}{{{x^x}}}dx}  = \sum\limits_{n = 1}^{ + \infty } {\frac{1}{{{n^n}}}} .\]

enlightened证:令$u = xy,v = x$,则$x=v,y=\frac uv$.由$0\leq x,y\leq 1$可知$0\leq u\leq v,0\leq v\leq 1$,

\begin{align*}\left| {\frac{{\partial \left( {x,y} \right)}}{{\partial \left( {u,v} \right)}}} \right| = \left| {\begin{array}{*{20}{c}}0&1\\{\frac{1}{v}}&{ - \frac{u}{{{v^2}}}}\end{array}} \right| = - \frac{1}{v}\,,\end{align*}
那么有
\begin{align*}&\int_0^1 {\int_0^1 {\frac{1}{{{{\left( {xy} \right)}^{xy}}}}dxdy} } = \int_0^1 {dv} \int_0^v {\frac{1}{{{u^u}v}}du} \\&= \int_0^1 {du} \int_u^1 {\frac{1}{{{u^u}v}}dv} = \int_0^1 {\frac{{ - \ln u}}{{{u^u}}}du} \\&= \int_0^1 {\frac{{ - \ln u - 1}}{{{u^u}}}du} + \int_0^1 {\frac{1}{{{u^u}}}du} \\&= \left[ {\frac{1}{{{u^u}}}} \right]_0^1 + \int_0^1 {\frac{1}{{{u^u}}}du} = \int_0^1 {\frac{1}{{{x^x}}}dx}.\end{align*}
\begin{align*}&\int_0^1 {\frac{1}{{{x^x}}}dx} = \int_0^1 {{e^{ - x\ln x}}dx} = \int_0^1 {{e^{ - x\ln x}}dx} \\&= \int_0^1 {\sum\limits_{n = 0}^{+\infty} {\frac{{{{\left( { - x\ln x} \right)}^n}}}{{n!}}} dx} = \sum\limits_{n = 0}^{+\infty} {\frac{1}{{n!}}\int_0^1 {{{\left( { - x\ln x} \right)}^n}dx} }.\end{align*}
令$t=-(n+1)\ln x$,有
\begin{align*}\int_0^1 {{{\left( { - x\ln x} \right)}^n}dx} &= \frac{1}{{{{\left( {n + 1} \right)}^{n + 1}}}}\int_0^{ + +\infty } {{t^n}{e^{ - t}}dt} \\&= \frac{{\Gamma \left( {n + 1} \right)}}{{{{\left( {n + 1} \right)}^{n + 1}}}} = \frac{{n!}}{{{{\left( {n + 1} \right)}^{n + 1}}}}.\end{align*}
因此有
\begin{align*}\int_0^1 {\frac{1}{{{x^x}}}dx} = \sum\limits_{n = 0}^{ + \infty } {\frac{1}{{n!}}\int_0^1 {{{\left( { - x\ln x} \right)}^n}dx} } = \sum\limits_{n = 0}^{ + \infty } {\frac{1}{{{{\left( {n + 1} \right)}^{n + 1}}}}} =\sum\limits_{n = 1}^{ + \infty } {\frac{1}{{{n^n}}}} .\end{align*}laugh

4.(25分) 设$A$是一个$n$阶方阵,且$n\geq3$.$A^\ast$是$A$的伴随矩阵(即$A$的代数余子式所组成的矩阵).试证明,若${(A^\ast)}^\ast\neq O$ (零矩阵),则$A$可逆,且此时${(A^\ast)}^\ast$是$A$的一个纯量倍.

enlightened证:由于$A$可逆时,$A^\ast$必可逆,从而${(A^\ast)}^\ast$亦可逆;当$A$不可逆时,$A^\ast$的秩不大于$1$,从而${(A^\ast)}^\ast$必为零矩阵.

 

由此可知,当${(A^\ast)}^\ast\neq O$ 时,$A$可逆.再由\[A{A^ * } = \left| A \right|{I_n} \Rightarrow \left| {{A^ * }} \right| = {\left| A \right|^{n - 1}},{\left( {{A^ * }} \right)^{ - 1}} = \frac{1}{{\left| A \right|}}A\]及\[{A^ * }{\left( {{A^ * }} \right)^*} = \left| {{A^ * }} \right|{I_n}\]可知

\[{\left( {{A^ * }} \right)^*} = \left| {{A^ * }} \right|{\left( {{A^ * }} \right)^{ - 1}} = {\left| A \right|^{n - 1}} \cdot \frac{1}{{\left| A \right|}}A = {\left| A \right|^{n - 2}}A.\]由于${\left| A \right|^{n - 2}}$是个定值,我们得知${(A^\ast)}^\ast$是$A$的一个纯量倍.laugh


5.(25分) 设$A$是一个3阶实方阵,考虑$A$所定义的线性变换$\mathbb{R}^3\to\mathbb{R}^3,\alpha\to A\alpha$ ( $\alpha$是列向量).试证明:若$AA'=A'A$ (其中$A'$是指$A$的转置矩阵),则上述线性变换必有一个2维不变子空间.

 


6.(25分) 设$A$和$B$是复数域$\mathbb{C}$上的两个$n$阶方阵,并且$A$有$n$个特征值$1,2,\cdots,n$, $B$也有$n$个特征值$\sqrt{p_1},\cdots,\sqrt{p_n}$,其中$p_1,\cdots,p_n$是前$n$个素数(比如$p_1=2,p_2=3$等).试证明: $M_n(\mathbb{C})$上的线性变换$X\to AXB$是可以对角化的.

 

7.(25分) 设\[A = \left( {\begin{array}{*{20}{c}}{ - 2}&1&3\\{ - 2}&1&2\\{ - 1}&1&2\end{array}} \right),\]

试找出两个没有常数项的多项式$f(x)$和$\varphi(x)$,使得下列三个条件同时成立:
1). $f(A)$可对角化.    2). $\varphi (A)$是幂零矩阵.    3). $A=f(A)+\varphi (A)$.
enlightened解:\[f\left( \lambda \right) = \left| {\lambda {I_n} - A} \right| = \left( {\lambda + 1} \right){\left( {\lambda - 1} \right)^2}.\]

由Cayley---Hamilton定理可知,\[f\left( A \right) = \left( {A + 1} \right){\left( {A - 1} \right)^2} = {A^3} - {A^2} - A + {I_n} = 0.\]

我们有

\[A = {A^3} + \left( {{A^2} - {A^4}} \right).\]取\[f\left( x \right) = {x^3},\varphi \left( x \right) = {x^2} - {x^4}\]即可.laugh


8.几何部分共5道小题,每小题10分。

(1)三维欧氏空间中取定直角坐标系。有一直线$l$过点$(1,0,0)$且方向向量为$(0,1,1)$。$l$绕$z$轴旋转生成一个二次曲面$S$。试写出此二次曲面的代数方程(形如$f(x,y,z)=0$).
(2)设有一固定平面$\Sigma$,具有以下性质:上述直线$l$在绕$z$轴旋转过程中总是与$\Sigma$相交。考虑与$\Sigma$平行的平面族$\Sigma_t,t\in\mathbb{R},\Sigma_0=\Sigma$。试证明$\Sigma_t\cap S$总是椭圆.
(3)试证明$t$值变化过程中,上述各椭圆的中心总落在一条过原点的空间定直线$L$上.
(4)固定$L$上任一点$p$,试证明:由$p$向曲面$S$作的各条切线的切点都落在一条椭圆$\Gamma_p$上,且椭圆$\Gamma_p$所在平面是$\Sigma_t$之一.
(5)$S$把它在空间的补集分成内外两个连通分支,其中外部区域不包含原点。取上一小题所述椭圆$\Gamma$所在平面落在$S$外部的一点$\hat p$。试证明:从$\hat p$向$S$所作的各条切线之切点落在一条双曲线$\hat \Gamma$上,且$\hat \Gamma$所在平面过$p$点.
enlightened证:(1)记$A(1,0,0)$,设直线上有一点$B(x,y,z)$,则$\overrightarrow {AB} = \left( {x - 1,y,z} \right)=t(0,1,1)$,则$B$为$(1,t,t)$.对于给定$z=t$,其绕$z$轴旋转形成的图形为\[{x^2} + {y^2} = {t^2} + 1 = {z^2} + 1,\]故该二次曲面方程为\[{x^2} + {y^2} - {z^2} - 1 = 0.\]

(2)设固定平面$\Sigma$的方程为$Ax+By+Cz-a_t=0$

 

  • 若$A^2+B^2=0$即$A=B=0$时,方程退化成

$z = \frac{{{a_t}}}{C}$,\[\left\{ \begin{array}{l}{x^2} + {y^2} - {z^2} = 1\\z = \frac{{{a_t}}}{C}\end{array} \right. \Rightarrow \frac{{{x^2}}}{{\frac{{a_t^2}}{{{C^2}}} + 1}} + \frac{{{y^2}}}{{\frac{{a_t^2}}{{{C^2}}} + 1}} = 1,\]

可知此时$\Sigma_t\cap S$为圆,当然可以看成是椭圆.

  • 若$A^2+B^2\neq0$时,作坐标系旋转

\[\left\{ \begin{array}{l}{x_1} = \frac{B}{{\sqrt {{A^2} + {B^2}} }}x - \frac{A}{{\sqrt {{A^2} + {B^2}} }}y\\{y_1} = - \frac{{AC}}{{\sqrt {\left( {{A^2} + {B^2}} \right)\left( {{A^2} + {B^2} + {C^2}} \right)} }}x - \frac{{BC}}{{\sqrt {\left( {{A^2} + {B^2}} \right)\left( {{A^2} + {B^2} + {C^2}} \right)} }}y + \frac{{{A^2} + {B^2}}}{{\sqrt {\left( {{A^2} + {B^2}} \right)\left( {{A^2} + {B^2} + {C^2}} \right)} }}z\\{z_1} = \frac{A}{{\sqrt {{A^2} + {B^2} + {C^2}} }}x + \frac{B}{{\sqrt {{A^2} + {B^2} + {C^2}} }}y + \frac{C}{{\sqrt {{A^2} + {B^2} + {C^2}} }}z\end{array} \right.\]

\[\left\{ \begin{array}{l}x = \frac{B}{{\sqrt {{A^2} + {B^2}} }}{x_1} - \frac{{AC}}{{\sqrt {\left( {{A^2} + {B^2}} \right)\left( {{A^2} + {B^2} + {C^2}} \right)} }}{y_1} + \frac{A}{{\sqrt {{A^2} + {B^2} + {C^2}} }}{z_1}\\y = - \frac{A}{{\sqrt {{A^2} + {B^2}} }}{x_1} - \frac{{BC}}{{\sqrt {\left( {{A^2} + {B^2}} \right)\left( {{A^2} + {B^2} + {C^2}} \right)} }}{y_1} + \frac{B}{{\sqrt {{A^2} + {B^2} + {C^2}} }}{z_1}\\z = \frac{{\sqrt {{A^2} + {B^2}} }}{{\sqrt {{A^2} + {B^2} + {C^2}} }}{y_1} + \frac{C}{{\sqrt {{A^2} + {B^2} + {C^2}} }}{z_1}\end{array} \right.,\]

该平面方程化为${z_1} = \frac{{{a_t}}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}$, $S$化为

\[x_1^2 + \frac{{{C^2} - {A^2} - {B^2}}}{{{A^2} + {B^2} + {C^2}}}y_1^2 - \frac{{{C^2} - {A^2} - {B^2}}}{{{A^2} + {B^2} + {C^2}}}z_1^2 - \frac{{4C\sqrt {{A^2} + {B^2}} }}{{{A^2} + {B^2} + {C^2}}} - 1 = 0,\]

则截面方程为

\[x_1^2 + \frac{{{C^2} - {A^2} - {B^2}}}{{{A^2} + {B^2} + {C^2}}}y_1^2 - \frac{{{C^2} - {A^2} - {B^2}}}{{{{\left( {{A^2} + {B^2} + {C^2}} \right)}^2}}}a_t^2 - \frac{{4C\sqrt {{A^2} + {B^2}} }}{{{A^2} + {B^2} + {C^2}}} - 1 = 0.\]显然$\Sigma_t\cap S$为椭圆.

 

综上可知, $\Sigma_t\cap S$总是椭圆.

(3)由(2)可知,在$x_1y_1z_1$坐标系中,椭圆的中心为

\[\left( {0,0,\frac{{{a_t}}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}} \right),\]即中心在$z_1$轴上,\[\left\{ \begin{array}{l}{x_1} = \frac{B}{{\sqrt {{A^2} + {B^2}} }}x - \frac{A}{{\sqrt {{A^2} + {B^2}} }}y = 0\\{y_1} = - \frac{{AC}}{{\sqrt {\left( {{A^2} + {B^2}} \right)\left( {{A^2} + {B^2} + {C^2}} \right)} }}x - \frac{{BC}}{{\sqrt {\left( {{A^2} + {B^2}} \right)\left( {{A^2} + {B^2} + {C^2}} \right)} }}y + \frac{{{A^2} + {B^2}}}{{\sqrt {\left( {{A^2} + {B^2}} \right)\left( {{A^2} + {B^2} + {C^2}} \right)} }}z = 0\end{array} \right.,\]从而在$xyz$坐标系中,椭圆中心落在过原点的定直线

\[L: \left\{ \begin{array}{l}Bx - Ay = 0\\- ACx - BCy + \left( {{A^2} + {B^2}} \right)z = 0\end{array} \right.\]

上.

(4)设\[S: x_1^2 + \frac{{{C^2} - {A^2} - {B^2}}}{{{A^2} + {B^2} + {C^2}}}y_1^2 - \frac{{{C^2} - {A^2} - {B^2}}}{{{A^2} + {B^2} + {C^2}}}z_1^2 - \frac{{4C\sqrt {{A^2} + {B^2}} }}{{{A^2} + {B^2} + {C^2}}} - 1 = 0,\]上一点$P\left( {{x_{1,0}},{y_{1,0}},{z_{1,0}}} \right)$,则曲面$S$在$P$点处的切面为

\[\left( {{x_1} - {x_{1,0}}} \right) \cdot \left( {2{x_{1,0}}} \right) + \left( {{y_1} - {y_{1,0}}} \right) \cdot \left( {2\frac{{{C^2} - {A^2} - {B^2}}}{{{A^2} + {B^2} + {C^2}}}{y_{1,0}}} \right) + \left( {{z_1} - {z_{1,0}}} \right) \cdot \left( { - 2\frac{{{C^2} - {A^2} - {B^2}}}{{{A^2} + {B^2} + {C^2}}}{z_{1,0}}} \right) = 0,\]记坐标系$xyz$中,直线$L$上任一点$p$在$x_1,y_1,z_1$中的坐标为$p_1(0,0,m)$,则$p_1$满足切面方程,即\[\left( {0 - {x_{1,0}}} \right) \cdot \left( {2{x_{1,0}}} \right) + \left( {0 - {y_{1,0}}} \right) \cdot \left( {2\frac{{{C^2} - {A^2} - {B^2}}}{{{A^2} + {B^2} + {C^2}}}{y_{1,0}}} \right) + \left( {m - {z_{1,0}}} \right) \cdot \left( { - 2\frac{{{C^2} - {A^2} - {B^2}}}{{{A^2} + {B^2} + {C^2}}}{z_{1,0}}} \right) = 0,\]\[ - 2m\frac{{{C^2} - {A^2} - {B^2}}}{{{A^2} + {B^2} + {C^2}}}{z_{1,0}} - \frac{{8C\sqrt {{A^2} + {B^2}} }}{{{A^2} + {B^2} + {C^2}}} - 2 = 0 \Rightarrow {z_{1,0}} = \frac{{\left( {{A^2} + {B^2} + {C^2}} \right) + 4C\sqrt {{A^2} + {B^2}} }}{{m\left( {{A^2} + {B^2} - {C^2}} \right)}},\]故此时的$P$的$z_1$坐标为定值, 在$x_1,y_1,z_1$中$P$形成的轨迹为椭圆,且对应在$x,y,z$中$\Sigma_t\cap S$的一个椭圆.

(5)设$x_1y_1z_1$坐标系中, $\Gamma_p: \left\{ \begin{array}{l}{z_1} = \frac{{\left( {{A^2} + {B^2} + {C^2}} \right) + 4C\sqrt {{A^2} + {B^2}} }}{{m\left( {{A^2} + {B^2} - {C^2}} \right)}}\\x_1^2 + \frac{{{C^2} - {A^2} - {B^2}}}{{{A^2} + {B^2} + {C^2}}}y_1^2 - \frac{{{C^2} - {A^2} - {B^2}}}{{{A^2} + {B^2} + {C^2}}}z_1^2 - \frac{{4C\sqrt {{A^2} + {B^2}} }}{{{A^2} + {B^2} + {C^2}}} - 1 = 0\end{array} \right.$所在平面落在$S$外部的一点$\hat p_1$的坐标为$\left( {{x_{1,1}},{y_{1,1}},{z_{1,1}}} \right)$, $\hat p_1$满足(4)中$P$点处的切面方程,即\[\left( {{x_{1,1}} - {x_{1,0}}} \right) \cdot \left( {2{x_{1,0}}} \right) + \left( {{y_{1,1}} - {y_{1,0}}} \right) \cdot \left( {2\frac{{{C^2} - {A^2} - {B^2}}}{{{A^2} + {B^2} + {C^2}}}{y_{1,0}}} \right) + \left( {{z_{1,1}} - {z_{1,0}}} \right) \cdot \left( { - 2\frac{{{C^2} - {A^2} - {B^2}}}{{{A^2} + {B^2} + {C^2}}}{z_{1,0}}} \right) = 0,\]

 

则有

\[2{x_{1,1}}{x_{1,0}} + 2\frac{{{C^2} - {A^2} - {B^2}}}{{{A^2} + {B^2} + {C^2}}}{y_{1,1}}{y_{1,0}} - \frac{{8C\sqrt {{A^2} + {B^2}} }}{{{A^2} + {B^2} + {C^2}}} - 2 + \frac{{2\left( {{A^2} + {B^2} + {C^2}} \right) + 8C\sqrt {{A^2} + {B^2}} }}{{m\left( {{A^2} + {B^2} - {C^2}} \right)}}{z_{1,0}} = 0.\]显然其经过$p_1$.进一步地,经过与之前类似的坐标轴旋转,我们知道$P$的轨迹落在一条双曲线上.


PS:这份试卷是考完后的第一天根据好友同学提供的资料进行整理的,感谢他们的辛劳,同时也祝贺他们在昨天下午清华的初试中获得成功。

 

武汉大学2014年基础数学复试笔试题回忆

试题来自陈洪葛的博客.

 

问题1.(10分)函数$f(x)$在$(-1,1)$上连续,除了$0$这一点外可导。

  1. 若$f(x)$的导函数当$x\to 0$时极限存在,证明$f(x)$在$0$点的导数存在。
  2. 上述命题的逆命题是否成立?就是说$f(x)$在$0$点的导数存在是不是一定有$f(x)$在$x\to 0$的极限存在?成立请证明,否则给出反例。

 

问题2(10分)证明函数$f(x)$在$(a,b)$上一致连续的充分必要条件是对$(a,b)$上的收敛数列$\{x_{n}\}$,数列$\{f(x_{n})\}$也收敛。

 

 

问题3(10分)

证明含参变量积分

\[\int_{0}^{+\infty}\frac{\sin{xy}}{y(1+x)}dy\]

关于$x$在$0<\delta\leq x<+\infty$上一致收敛,在$0<x<+\infty$上非一致收敛。

 

 

问题4(10分)设$X$是带有度量空间上的紧集,$E\subset X,\varphi(x)$是$E$上的变换,且满足

\[d(\varphi(x),\varphi(y))<d(x,y) \qquad (x\neq y,x,y\in E).\]

证明$\varphi(x)$在E中存在唯一的不动点。

 

 

问题5(10分)(Tauber定理)

设在$-1<x<1$上有

\[f(x)=\sum_{n=0}^{\infty}a_{n}x^{n}\]

并且

\[\lim_{n\to\infty}na_{n}=0.\]

若$\displaystyle \lim_{x\to 1^{-}}f(x)=S$,则$\displaystyle \sum_{n=0}^{\infty}a_{n}$收敛且其和为$S$.

 

 

问题6 (15分)

 

讨论微分方程过点y=0的解的存在性和唯一性,其中$\alpha>0$.

\[\frac{dy}{dx}=|y|^{\alpha}.\]

 

 

问题7 (15分)设$A$是$n$阶可逆复方阵,证明存在分解

\[A=UT,\]

其中$U$是酉矩阵,$T$是主对角线上都是正数的上三角型矩阵,并证明这种分解的唯一性。

 

 

问题8 (20分)

已知$A = \left( {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right) \in \mathbb{C}^{2\times 2}$,定义$\mathbb{C}^{2\times 2}$的变换$f:f(X)=XA,\forall X\in \mathbb{C}^{2\times 2}$.

  1. 证明$f$是$\mathbb{C}^{2\times 2}$的线性变换;
  2. 求$f$在$\mathbb{C}^{2\times 2}$的基

    \[{E_{11}} = \left( {\begin{array}{*{20}{c}}1&0\\0&0\end{array}} \right),{E_{12}} = \left( {\begin{array}{*{20}{c}}0&1\\0&0\end{array}} \right),{E_{21}} = \left( {\begin{array}{*{20}{c}}0&0\\1&0\end{array}} \right),{E_{22}}= \left( {\begin{array}{*{20}{c}}0&0\\0&1\end{array}} \right)\]

    下的矩阵$M$.

  3. 给出$\mathbb{C}^{2\times 2}$的两个非零的$f$不变子空间$V_1$和$V_2$,使得$\mathbb{C}^{2\times 2}=V_1\oplus V_2$,请阐述理由.
  4. 证明:存在$\mathbb{C}^{2\times 2}$的一个基,使得$f$在这一基下的矩阵为对角矩阵当且仅当矩阵$A$与对角矩阵相似.