# 一个与多项式分拆有关的级数题

Eufisky posted @ 2014年8月29日 17:54 in 数学分析 with tags 级数 分拆 , 918 阅读

\begin{align*}&x\left( {x - 1} \right)\left( {x - 2} \right) \cdots \left( {x - k + 1} \right) = {x^k} - {a_{k - 2}}x\left( {x - 1} \right)\left( {x - 2} \right) \cdots \left( {x - k + 2} \right) \\&-  \cdots  - {a_2}x\left( {x - 1} \right)\left( {x - 2} \right) - {a_1}x\left( {x - 1} \right) - {a_0}x.\end{align*}

$\frac{{{{\left( {1 + 2 + \cdots + \left( {k - 1} \right)} \right)}^2} - \left( {{1^2} + {2^2} + \cdots + {{\left( {k - 1} \right)}^2}} \right)}}{2} = \left( {1 + 2 + \cdots + \left( {k - 2} \right)} \right){a_{k - 2}} - {a_{k - 3}}.$故${a_{k - 3}} = \frac{{\left( {3k - 5} \right)\left( {k - 2} \right)\left( {k - 1} \right)k}}{{24}}.$

\begin{align*}&{\left( { - 1} \right)^{k - n}}\sum\limits_{1 \le {k_1} < {k_2} <  \cdots  < {k_{k - n}} \le k - 1} {{k_1}{k_2} \cdots {k_{k - n}}}  = {\left( { - 1} \right)^{k - n}}{a_{k - 2}}\sum\limits_{1 \le {k_1} < {k_2} <  \cdots  < {k_{k - n - 1}} \le k - 2} {{k_1}{k_2} \cdots {k_{k - n - 1}}} \\&+ {\left( { - 1} \right)^{k - n - 1}}{a_{k - 3}}\sum\limits_{1 \le {k_1} < {k_2} <  \cdots  < {k_{k - n - 2}} \le k - 3} {{k_1}{k_2} \cdots {k_{k - n - 2}}}  +  \cdots  + {\left( { - 1} \right)^2}{a_n}\sum\limits_{1 \le {k_1} \le n} {{k_1}} {x^n} + {\left( { - 1} \right)^1}{a_{n - 1}}.\end{align*}

\begin{align*}\sum\limits_{n = 1}^\infty  {\frac{{{n^k}}}{{n!}}}  &= \sum\limits_{n = 1}^\infty  {\frac{{{a_0}n + {a_1}n\left( {n - 1} \right) + {a_2}n\left( {n - 1} \right)\left( {n - 2} \right) +  \cdots  + {a_{k - 1}}n\left( {n - 1} \right)\left( {n - 2} \right) \cdots \left( {n - k + 1} \right)}}{{n!}}} \\&= {a_0}\sum\limits_{n = 1}^\infty  {\frac{1}{{\left( {n - 1} \right)!}}}  + {a_1}\sum\limits_{n = 2}^\infty  {\frac{1}{{\left( {n - 2} \right)!}}}  + {a_2}\sum\limits_{n = 3}^\infty  {\frac{1}{{\left( {n - 3} \right)!}}}  +  \cdots  + {a_{k - 1}}\sum\limits_{n = k}^\infty  {\frac{1}{{\left( {n - k} \right)!}}} \\&= \left( {{a_0} + {a_1} + {a_2} +  \cdots {a_{k - 1}}} \right)e = Ne.\end{align*}
UPMSP Plus One Previ 说:
2022年8月15日 23:15

For all of the students enrolled in these institutions, this board is drafting a syllabus from Class I to Class XII. There are several schools in the state of Uttar Pradesh that are associated with this board. Every year, this board also holds exams for the ninth and eleventh grades, in which a large number of students participate. These exams' UPMSP Plus One Question Paper 2023 was released in June. UPMSP Plus One Previous Paper 2023 As we know, the UPMSP Plus One Important Question Paper 2023 for class 11th of the UP Board was announced in the month of June the previous year, and we presume, there were 26 lakh students who appeared in the Class 11th UP board examinations, and the pass % of the entire students.

(输入验证码)
or Ctrl+Enter