一系列类似积分相等的证明
前阵子四叶群里有人问道下面这题,虽感觉此题结论优美但无从下手.
(1)证明:\[\frac{1}{{\sqrt {2\pi } }}\int_z^\infty {{e^{ - \frac{1}{2}{x^2}}}dx} = \frac{1}{\pi }\int_0^{\frac{\pi }{2}} {{e^{ - \frac{{{z^2}}}{{2{{\sin }^2}x}}}}dx} \]
(2)证明:\[{\left( {\frac{1}{{\sqrt {2\pi } }}\int_z^\infty {{e^{ - \frac{1}{2}{x^2}}}dx} } \right)^2} = \frac{1}{\pi }\int_0^{\frac{\pi }{4}} {{e^{ - \frac{{{z^2}}}{{2{{\sin }^2}x}}}}dx} .\]
(3)当$n>2$时,
\[{\left( {\frac{1}{{\sqrt {2\pi } }}\int_z^\infty {{e^{ - \frac{1}{2}{x^2}}}dx} } \right)^n} = \frac{1}{\pi }\int_0^{\frac{\pi }{{2n}}} {{e^{ - \frac{{{z^2}}}{{2{{\sin }^2}x}}}}dx}\]
是否成立?