京都大学和东京大学等名校数学系试题
东京大学:http://www.ms.u-tokyo.ac.jp/kyoumu/examination1.html
以及别的专业问题:https://www.s.u-tokyo.ac.jp/ja/admission/master/
京都大学:https://www.math.kyoto-u.ac.jp/ja/past-exams
PUMaC普林斯顿数学竞赛试题:https://pumac.princeton.edu/info/archives/
哈佛的题:https://www.physics.harvard.edu/academics/undergrad/problems
https://www.hmmt.co/archive/problems/
http://www.math.harvard.edu/graduate/index.html
UCLA:http://papyrus.math.ucla.edu/gradquals/hbquals.php
马塞诸萨州大学:https://www.math.umass.edu/graduate/sample-qualifying-exams
FoxTrot Series
Ahmed’s integrals 和 Coxeter’s integrals
下面给出自己的一些结果:
\[\int_0^{\frac{\pi }{2}} {\arccos \sqrt {\frac{{\cos x}}{{1 + 2\cos x}}} dx} = \int_0^{\frac{\pi }{2}} {\arctan \sqrt {\frac{{\cos x + 1}}{{\cos x}}} dx} = 2A\left( { - 1\left| {\frac{\pi }{2},\frac{\pi }{2},\frac{{2\pi }}{3}} \right.} \right)\]
而
\[\int_0^{\frac{\pi }{2}} {\arccos \sqrt {\frac{{\cos x}}{{1 + 2\cos x}}} dx} = \frac{{{\pi ^2}}}{6}.\]
斯坦福大学Phd资格考试实分析和代数试题
级数方法解答的一道积分不等式题
百年云烟只过眼,不为繁华易素心
一道略火的题,由雷神解答:
证明\[\int_0^{2\left( {k + 1} \right)} {\frac{{{x^k}}}{{k!}}{e^{ - x}}dx} > \frac{k}{{1 + k}},\quad k = 0,1,2, \cdots .\]
证.注意到\[\int {\frac{{{x^k}}}{{k!}}{e^{ - x}}dx} = - {e^{ - x}}\sum\limits_{i = 0}^k {\frac{{{x^i}}}{i}} + C.\]
因此
\[\int_0^{2\left( {k + 1} \right)} {\frac{{{x^k}}}{{k!}}{e^{ - x}}dx} = - \left. {{e^{ - x}}\sum\limits_{i = 0}^k {\frac{{{x^i}}}{i}} } \right|_0^{2\left( {k + 1} \right)} = 1 - {e^{ - 2\left( {k + 1} \right)}}\sum\limits_{i = 0}^k {\frac{{{{\left( {2k + 2} \right)}^i}}}{i}} .\]
等价于证明\[1 - {e^{ - 2\left( {k + 1} \right)}}\sum\limits_{i = 0}^k {\frac{{{{\left( {2k + 2} \right)}^i}}}{i}} > \frac{k}{{1 + k}}.\]
即证
\[{e^{2k + 2}} > \left( {k + 1} \right)\sum\limits_{i = 0}^k {\frac{{{{\left( {2k + 2} \right)}^i}}}{{i!}}} \Leftrightarrow \sum\limits_{i = 0}^\infty {\frac{{{{\left( {2k + 2} \right)}^i}}}{{i!}}} > \left( {k + 1} \right)\sum\limits_{i = 0}^k {\frac{{{{\left( {2k + 2} \right)}^i}}}{{i!}}} .\]
下面证明\[\sum\limits_{i = 0}^{2k + 1} {\frac{{{{\left( {2k + 2} \right)}^i}}}{{i!}}} > \left( {k + 1} \right)\sum\limits_{i = 0}^k {\frac{{{{\left( {2k + 2} \right)}^i}}}{{i!}}} .\]
等价于证明
\[\sum\limits_{i = k + 1}^{2k + 1} {\frac{{{{\left( {2k + 2} \right)}^i}}}{{i!}}} = \sum\limits_{i = 0}^k {\frac{{{{\left( {2k + 2} \right)}^{i + k + 1}}}}{{\left( {i + k + 1} \right)!}}} > k\sum\limits_{i = 0}^k {\frac{{{{\left( {2k + 2} \right)}^i}}}{{i!}}} .\]
只需证明\[\frac{{{{\left( {2k + 2} \right)}^{i + k + 1}}}}{{\left( {i + k + 1} \right)!}} > k\frac{{{{\left( {2k + 2} \right)}^i}}}{{i!}} \Leftrightarrow {\left( {2k + 2} \right)^{k + 1}} > k\frac{{\left( {i + k + 1} \right)!}}{{i!}}.\]
而
\[{\left( {2k + 2} \right)^{k + 1}} > k\frac{{\left( {2k + 1} \right)!}}{{k!}} = k\left( {k + 1} \right) \cdots \left( {2k + 1} \right) > k\frac{{\left( {i + k + 1} \right)!}}{{i!}}\]是显然的.
谢惠民题解之23.2含参变量广义积分
1.讨论下列广义积分的一致收敛性:
(1) $\displaystyle \int_0^{ + \infty } {{e^{ - \left( {1 + {a^2}} \right)t}}\sin tdt} ,\quad a \in \left( { - \infty , + \infty } \right)$;
(2) $\displaystyle \int_0^{ + \infty } {\frac{{\cos xy}}{{\sqrt {x + y} }}dx} ,\quad y \in \left[ {{y_0}, + \infty } \right)$,其中$y_0>0$;
(3) $\displaystyle \int_0^{ + \infty } {{e^{ - t{x^2}}}dx} ,\quad t \in \left( {0, + \infty } \right)$;
(4) $\displaystyle \int_1^{ + \infty } {{e^{ - \alpha x}}\frac{{\cos x}}{{\sqrt x }}dx} ,\quad \alpha \in \left[ {0, + \infty } \right)$;
(5) $\displaystyle \int_0^{ + \infty } {{e^{ - {{\left( {x - y} \right)}^2}}}dx} ,\quad y \in \left( { - \infty , + \infty } \right)$;
(6) $\displaystyle \int_0^{ + \infty } {x\ln x{e^{ - t\sqrt x }}dx}$,$\quad$ (1) $t\in [t_0,+\infty)$,其中$t_0>0$,$\quad$ (2) $t\in (0,+\infty)$;
(7) $\displaystyle \int_1^{ + \infty } {\frac{{1 - {e^{ - ut}}}}{t}\cos tdt} ,\quad u \in \left[ {0,1} \right]$;
(8) $\displaystyle \int_0^{ + \infty } {\frac{{\alpha t}}{{1 + {\alpha ^2} + {t^2}}} \cdot {e^{ - {\alpha ^2}{t^2}}}\cos {\alpha ^2}{t^2}dt} ,\quad \alpha \in \left( {0, + \infty } \right)$;
(9) $\displaystyle \int_0^{ + \infty } {{e^{ - {x^2}\left( {1 + {y^2}} \right)}}\sin ydy} ,\quad x \in \left( {0, + \infty } \right)$;
(10) $\displaystyle \int_0^{ + \infty } {\frac{{\alpha dx}}{{1 + {\alpha ^2}{x^2}}}} ,\quad \alpha \in \left( {0,1} \right)$;
(11) $\displaystyle \int_0^2 {\frac{{{x^t}}}{{\sqrt[3]{{\left( {x - 1} \right)\left( {x - 2} \right)}}}}dx} ,\quad \left| t \right| < \frac{1}{2}$;
(12) $\displaystyle \int_0^1 {{{\left( {1 - x} \right)}^{u - 1}}dx}$,$\quad$ (1) $u\in [a,+\infty)$,其中$a>0$,$\quad$ (2) $u\in (0,+\infty)$.
解.
(1) 一致收敛.由于
\[\left| {{e^{ - \left( {1 + {a^2}} \right)t}}\sin t} \right| \le {e^{ - t}},\quad 0 \le t < + \infty , - \infty < a < + \infty ,\]
而$\int_0^{ + \infty } {{e^{ - t}}dt} = 1$收敛,由Weierstrass判别法知, $\int_0^{ + \infty } {{e^{ - \left( {1 + {a^2}} \right)t}}\sin tdt}$在$\left( { - \infty , + \infty } \right)$上一致收敛.
(2) 一致收敛.由于
\[\left| {\int_0^A {\cos xydx} } \right| = \left| {\frac{{\sin Ay}}{y}} \right| \le \frac{1}{y} \le \frac{1}{{{y_0}}}, \quad A \ge 0,y \ge {y_0},\]
因此它在$[y_0,+\infty)$一致有界.而$1/\sqrt{x+y}$是$x$的单调减少函数且$0<1/\sqrt{x+y}\leq 1/\sqrt{x+y_0}$,而$\lim_{x\to +\infty} \frac{1}{\sqrt{x+y_0}}=0$, 故这个极限关于$y$在$[y_0,+\infty)$上是一致的.于是由Dirichlet判别法知$\int_0^{ + \infty } {\frac{{\cos xy}}{{\sqrt {x + y} }}dx} $在$\left[ {{y_0}, + \infty } \right)$上一致收敛.
(3) 非一致收敛.对于正整数$n$,取$t_n=\frac1{n^2}$,这时
\begin{align*}\left| {\int_n^{2n} {{e^{ - {t_n}{x^2}}}dx} } \right| &= \int_n^{2n} {{e^{ - \frac{1}{{{n^2}}}{x^2}}}dx} > \int_n^{2n} {{e^{ - \frac{1}{{{n^2}}}{{\left( {2n} \right)}^2}}}dx} \\&= \int_n^{2n} {{e^{ - 4}}dx} = {e^{ - 4}}n \ge {e^{ - 4}}.\end{align*}
因此,只要取$\varepsilon_0=e^{-4}$,则对于任意大的正数$A_0$,总存在正整数$n$满足$n>A_0$,及$t_n=1/n^2\in (0,+\infty)$,使得$\left| {\int_n^{2n} {{e^{ - {t_n}{x^2}}}dx} } \right| > {e^{ - 4}} = {\varepsilon _0}$.由Cauchy收敛原理的推论可知$\int_0^{ + \infty } {{e^{ - t{x^2}}}dx} $关于$t$在$\left( {0, + \infty } \right)$上非一致收敛.
(4) $\int_1^A {\cos xdx}$显然有界, $1/\sqrt{x}$在$[1,+\infty)$上单调且$\lim_{x\to +\infty}\frac{1}{\sqrt{x}}=0$,由Dirichlet判别法, $\int_1^{+\infty}\frac{\cos x}{\sqrt{x}}$收敛,它当然关于$\alpha$一致收敛.显然$e^{-\alpha x}$关于$x$单调,且\[0\leq e^{-\alpha x}\leq 1,\quad 0\leq \alpha<+\infty,1\leq x<+\infty,\]即$e^{-\alpha x}$一致有界.由Abel判别法, $\int_1^{ + \infty } {{e^{ - \alpha x}}\frac{{\cos x}}{{\sqrt x }}dx}$在$\left[ {0, + \infty } \right)$上一致收敛.
(5) 不一致收敛.注意到$\displaystyle J\left( A \right) = \int_A^{2A} {{e^{ - {{\left( {x - y} \right)}^2}}}dx} = \int_{A - y}^{2A - y} {{e^{ - {u^2}}}du}$,并让$y$取$A$值,则得$\displaystyle J\left( A \right) = \int_0^A {{e^{ - {u^2}}}du} \to \int_0^{ + \infty } {{e^{ - {u^2}}}du} \left( {A \to + \infty } \right)$,即$J(A)$在$A\to +\infty$时不趋于$0$.
(6) 先证明$\int_0^{ + \infty } {x\ln x{e^{ - t\sqrt x }}dx}$在$[t_0,+\infty)(t_0>0)$上一致收敛.由于
\[\left| {x\ln x{e^{ - t\sqrt x }}} \right| \le \left| {x\ln x} \right|{e^{ - {t_0}\sqrt x }},\quad 0\leq x<+\infty,t_0\leq t<+\infty,\]
而$\int_0^1 {x\ln \frac{1}{x}{e^{ - {t_0}\sqrt x }}dx}$与$\int_1^{ + \infty } {x\ln x{e^{ - {t_0}\sqrt x }}dx}$均收敛,由Weierstrass判别法知,
$\int_0^{ + \infty } {x\ln x{e^{ - t\sqrt x }}dx}$在$[t_0,+\infty)$上一致收敛.
再证明$\int_0^{ + \infty } {x\ln x{e^{ - t\sqrt x }}dx}$在$(0,+\infty)$上非一致收敛.对于正整数$n$,取$t_n=\frac{1}{\sqrt{n}}$,这时
\begin{align*}&\left| {\int_n^{2n} {x\ln x{e^{ - {t_n}\sqrt x }}dx} } \right| = \left| {\int_n^{2n} {x\ln x{e^{ - \frac{1}{{\sqrt n }}\sqrt x }}dx} } \right|\\>& n\ln n\int_n^{2n} {{e^{ - \frac{1}{{\sqrt n }}\sqrt x }}dx} > n\ln n\int_n^{2n} {{e^{ - \frac{1}{{\sqrt n }}\sqrt {2n} }}dx} \\=& {n^2}\ln n \cdot {e^{ - \sqrt 2 }} \ge 4\ln 2 \cdot {e^{ - \sqrt 2 }}.\end{align*}
因此,只要取${\varepsilon _0} = 4\ln 2 \cdot {e^{ - \sqrt 2 }}$,则对于任意大的正数$A_0$,总存在正整数$n$满足$n>A_0$,及$y_n=\frac1{\sqrt n}\in (0,+\infty)$,使得$\left| {\int_n^{2n} {x\ln x{e^{ - {t_n}\sqrt x }}dx} } \right| > 4\ln 2 \cdot {e^{ - \sqrt 2 }}=\varepsilon_0$.由Cauchy收敛原理的推论知$\int_0^{ + \infty } {x\ln x{e^{ - t\sqrt x }}dx}$关于$t$在$(0,+\infty)$上非一致收敛.
(7) 一致收敛.由于$\int_1^{ + \infty } {\frac{{\cos t}}{t}dt}$收敛,它当然关于$u$一致收敛.显然$1-e^{-ut}$关于$t$单调,且
\[0\leq 1-e^{-ut}\leq 1,\quad 0\leq u\leq1,1\leq t<+\infty,\]即$1-e^{-ut}$一致有界.由Abel判别法, $\int_1^{ + \infty } {\frac{{1 - {e^{ - ut}}}}{t}\cos tdt}$在$\left[ {0,1} \right]$上一致收敛.
(8) 一致收敛.由于\[\left| {\int_0^A {\alpha t \cdot {e^{ - {\alpha ^2}{t^2}}}\cos {\alpha ^2}{t^2}dt} } \right| \le \int_0^A {\alpha t \cdot {e^{ - {\alpha ^2}{t^2}}}dt} = \frac{{1 - {e^{ - {\alpha ^2}{A^2}}}}}{{2\alpha }},\]且\[\mathop {\lim }\limits_{\alpha \to 0} \frac{{1 - {e^{ - {\alpha ^2}{A^2}}}}}{{2\alpha }} = 0,\mathop {\lim }\limits_{\alpha \to + \infty } \frac{{1 - {e^{ - {\alpha ^2}{A^2}}}}}{{2\alpha }} = 0,\]
因此它在$(0,+\infty)$一致有界,而$\frac{1}{{1 + {\alpha ^2} + {t^2}}}$是$x$的单调减少函数且$\frac{1}{{1 + {\alpha ^2} + {t^2}}} \le \frac{1}{{1 + {t^2}}},\lim_{t\to \infty}\frac1{1+t^2}=0$,因此$\lim_{t\to +\infty}\frac{1}{{1 + {\alpha ^2} + {t^2}}}=0$关于$\alpha$在$(0,+\infty)$上是一致的,于是由Dirichlet判别法知$\int_0^{ + \infty } {\frac{{\alpha t}}{{1 + {\alpha ^2} + {t^2}}} \cdot {e^{ - {\alpha ^2}{t^2}}}\cos {\alpha ^2}{t^2}dt}$在$\left( {0, + \infty } \right)$上一致收敛.
(9) 非一致收敛.对于正整数$n$,取${x_n} = \frac{1}{{\sqrt {1 + {{\left( {2n + 1} \right)}^2}{\pi ^2}} }}$,这时
\begin{align*}\left| {\int_{2n\pi }^{\left( {2n + 1} \right)\pi } {{e^{ - x_n^2\left( {1 + {y^2}} \right)}}\sin ydy} } \right| &= \left| {\int_{2n\pi }^{\left( {2n + 1} \right)\pi } {{e^{ - \frac{1}{{1 + {{\left( {2n + 1} \right)}^2}{\pi ^2}}}\left( {1 + {y^2}} \right)}}\sin ydy} } \right|\\&> \frac{1}{e}\int_{2n\pi }^{\left( {2n + 1} \right)\pi } {\sin ydy} = \frac{2}{e}.\end{align*}
因此,只要取$\varepsilon_0=2/e$,则对于任意大的正数$A_0$,总存在正整数$n$满足$2n\pi>A_0$,及$y_n=\frac{1}{{\sqrt {1 + {{\left( {2n + 1} \right)}^2}{\pi ^2}} }} \in (0,+\infty)$,使得$\left| {\int_{2n\pi }^{\left( {2n + 1} \right)\pi } {{e^{ - x_n^2\left( {1 + {y^2}} \right)}}\sin ydy} } \right| > \frac{2}{e}=\varepsilon_0$.由Cauchy收敛原理的推论知$\int_0^{ + \infty } {{e^{ - {x^2}\left( {1 + {y^2}} \right)}}\sin ydy} $关于$x$在$\left( {0, + \infty } \right)$上非一致收敛.
(10) 非一致收敛.对于任意取定的正数$A$,由于\[\int_A^{ + \infty } {\frac{{\alpha dx}}{{1 + {\alpha ^2}{x^2}}}} = \frac{\pi }{2} - \arctan \left( {\alpha A} \right),\]取$\alpha=1/A$,则有\[\int_A^{ + \infty } {\frac{{\alpha dx}}{{1 + {\alpha ^2}{x^2}}}} = \int_A^{ + \infty } {\frac{{1/A}}{{1 + {x^2}/{A^2}}}dx} = \frac{\pi }{4} .\]因此$\int_0^{ + \infty } {\frac{{\alpha dx}}{{1 + {\alpha ^2}{x^2}}}}$在$\left( {0,1} \right)$上不一致收敛.
(11) 一致收敛.见周民强207页.利用
当$0<x<1$时,我们有
\[0 \le \left| {\frac{{{x^t}}}{{\sqrt[3]{{\left( {x - 1} \right)\left( {x - 2} \right)}}}}} \right| < \frac{1}{{\sqrt x \sqrt[3]{{\left( {x - 1} \right)\left( {x - 2} \right)}}}}.\]
当$1<x<2$时,有
\[0 \le \left| {\frac{{{x^t}}}{{\sqrt[3]{{\left( {x - 1} \right)\left( {x - 2} \right)}}}}} \right| < \frac{{\sqrt x }}{{\sqrt[3]{{\left( {x - 1} \right)\left( {2 - x} \right)}}}}.\]
因此有
\[\int_0^2 {\frac{{{x^t}}}{{\sqrt[3]{{\left( {x - 1} \right)\left( {x - 2} \right)}}}}dx} < \int_0^1 {\frac{1}{{\sqrt x \sqrt[3]{{\left( {1 - x} \right)\left( {2 - x} \right)}}}}dx} + \int_1^2 {\frac{{\sqrt x }}{{\sqrt[3]{{\left( {x - 1} \right)\left( {2 - x} \right)}}}}dx} .\]
注意到下列渐进估计
\begin{align*}{\frac{1}{{\sqrt x \sqrt[3]{{\left( {1 - x} \right)\left( {2 - x} \right)}}}}} &= O\left( {\frac{1}{{\sqrt x }}} \right),x \to {0^ + },\\{\frac{1}{{\sqrt x \sqrt[3]{{\left( {1 - x} \right)\left( {2 - x} \right)}}}}} &= O\left( {\frac{1}{{\sqrt[3]{{x - 1}}}}} \right),x \to 1,\\\frac{{\sqrt x }}{{\sqrt[3]{{\left( {x - 1} \right)\left( {2 - x} \right)}}}} &= O\left( {\frac{1}{{\sqrt[3]{{x - 1}}}}} \right),x \to 1,\\\frac{{\sqrt x }}{{\sqrt[3]{{\left( {x - 1} \right)\left( {2 - x} \right)}}}} &= O\left( {\frac{1}{{\sqrt[3]{{2 - x}}}}} \right),x \to 2,\end{align*}
可知右端积分均收敛.由Weierstrass判别法可知,原积分关于$|t|<1/2$一致收敛.
(12) 先证明$\int_0^1 {{{\left( {1 - x} \right)}^{u - 1}}dx}$在$[a,+\infty)(a>0)$上一致收敛.由于\[{\left( {1 - x} \right)^{u - 1}} \le {\left( {1 - x} \right)^{a - 1}},\quad 0 \le x \le 1,a \le u < + \infty,\]而$\int_0^1 {{{\left( {1 - x} \right)}^{a - 1}}dx} = \frac{1}{a}$收敛,由Weierstrass判别法知, $\int_0^1 {{{\left( {1 - x} \right)}^{u - 1}}dx}$在$[a,+\infty)$上一致收敛.
再证明$\int_0^1 {{{\left( {1 - x} \right)}^{u - 1}}dx}$在$(0,+\infty)$上非一致收敛.对于任意取定的正数$A$且$A\to 0$,由于\[\int_A^1 {{{\left( {1 - x} \right)}^{u - 1}}dx} = \frac{1}{A},\]
取$u=A\in (0,+\infty )$,当$A$足够小时,我们有\[\int_A^1 {{{\left( {1 - x} \right)}^{u - 1}}dx} = \frac{{{{\left( {1 - A} \right)}^u}}}{u} = \frac{{{{\left( {1 - A} \right)}^A}}}{A} > 1.\]因此$\int_0^1 {{{\left( {1 - x} \right)}^{u - 1}}dx}$在$(0,+\infty)$上非一致收敛.
2.设$\displaystyle \int_0^{ + \infty } {{x^\lambda }f\left( x \right)dx}$当$\lambda=a,\lambda=b$时收敛$(a<b)$.证明$\displaystyle \int_0^{ + \infty } {{x^\lambda }f\left( x \right)dx}$当$\lambda=a,\lambda=b$关于$\lambda\in [a,b]$一致收敛.
证.这题来自菲哥第二册P577.积分$\int_0^1 {{x^a}f\left( x \right)dx}$是收敛的,而$x^{\lambda-a}$对于$\lambda\geq a$的值是$x$的单调函数,并以$1$为界.因此积分
\[\int_0^1 {{x^\lambda }f\left( x \right)dx} = \int_0^1 {{x^{\lambda - a}} \cdot {x^a}f\left( x \right)dx} \]关于$\lambda$一致收敛.类似地可以看出以下积分
\[\int_1^{ + \infty } {{x^\lambda }f\left( x \right)dx} = \int_1^{ + \infty } {{x^{\lambda - b}} \cdot {x^b}f\left( x \right)dx} ,\]
关于$\lambda\leq b$一致收敛.因此原积分一致收敛.
3.证明积分$\int_0^{ + \infty } {x{e^{ - xy}}dy}$在$(0,+\infty)$上不一致收敛.
证.对于任意取定的正数$A$,由于
\[\int_A^{ + \infty } {x{e^{ - xy}}dy} = {e^{ - Ax}},\]
取$x=1/A\in (0,+\infty)$,则有
\[\int_A^{ + \infty } {x{e^{ - xy}}dy} = \frac{1}{e}.\]因此$\int_0^{ + \infty } {x{e^{ - xy}}dy}$在$(0,+\infty)$上不一致收敛.
Sion's minimax theorem
解.这是Sion的极小极大定理,\[\inf_{y \in I}\sup_{x \in I}f(x,y)\geq \sup_{x \in I}\inf_{y\in I}f(x,y).\]
张老师自己写的书籍答案和讲义
Arnold:数学基本技艺测试100题
某家公司的笔试题