美国数学月刊无穷乘积与西西新年祝福题
求
若$a_i$是超越方程\[\left( {\cos x} \right)\left( {\cosh x} \right) + 1 = 0\]的正实数根从小到大排成的数列, 求证:
$$\sum_{i=1}^{\infty}{a_{i}^{-6}\left(\frac{\sin a_i-\sinh a_i}{\cos a_i+\cosh a_i}\right)^2}=\frac{1}{80}.$$
首先可以肯定,这个方程里$a_i$肯定是解不出的.其次我们有\[{\left( {\sinh {a_i}} \right)^2} = {\left( {\cosh {a_i}} \right)^2} - 1 = \frac{1}{{{{\cos }^2}{a_i}}} - 1 = {\tan ^2}{a_i} \Rightarrow \sinh {a_i} = \left| {\tan {a_i}} \right|.\]
当$\sinh {a_i} = \tan {a_i}$时,我们有\[{\left( {\frac{{\sin {a_i} - \sinh {a_i}}}{{\cos {a_i} + \cosh {a_i}}}} \right)^2} = {\left( {\frac{{\sin {a_i} - \tan {a_i}}}{{\cos {a_i} - \frac{1}{{\cos {a_i}}}}}} \right)^2} = {\tan ^2}\frac{{{a_i}}}{2}.\]
当$\sinh {a_i} = -\tan {a_i}$时,我们有\[{\left( {\frac{{\sin {a_i} - \sinh {a_i}}}{{\cos {a_i} + \cosh {a_i}}}} \right)^2} = {\left( {\frac{{\sin {a_i} + \tan {a_i}}}{{\cos {a_i} - \frac{1}{{\cos {a_i}}}}}} \right)^2} = {\cot ^2}\frac{{{a_i}}}{2}.\]事实上,两种情况都会出现.接下来大家一起来思考下哈!
以下几个也是不同寻常的题,正是因为莫名其妙、不明觉厉才想一探究竟,希望大家一起来玩!
1、求无穷积分$$\int_{1/2}^{+\infty}{\int_{1/2}^{+\infty}{\int_{1/2}^{+\infty}{\frac{dxdydz}{\prod\limits_{cyc}{\left[242x^5-\left(y-1\right)^5-\left(z+1\right)^5\right]}}}}}.$$
2、设\[{\left( {1 + \frac{1}{x}} \right)^x} = e\left( {1 - \sum\limits_{k = 1}^\infty {\frac{{{d_k}}}{{{{\left( {\frac{{11}}{{12}} + x} \right)}^k}}}} } \right),\]求
\[{\sum\limits_{k = 1}^\infty {\frac{1}{{1 + d_k^2}}} }.\]
(2017年10月AMM征解题)求证
记
好题
sinx小于x小于tanx,Young不等式,等周问题
张筑生,谢惠民
https://math.stackexchange.com/a/411763/165013
https://math.stackexchange.com/a/842310/165013
https://math.stackexchange.com/a/2323155/165013
https://math.stackexchange.com/a/718750/165013
https://math.stackexchange.com/a/83952/165013
https://math.stackexchange.com/a/61727/165013
分栏的列表环境
\begin{multicols}{2} \begin{enumerate} \item Item 1 \item Item 2 \item Item 3 \item This is item number 4 \item This is item number 5 \item This is item number 6 \end{enumerate} \end{multicols}
\documentclass[12pt,a4paper]{article} \begin{document} \begin{enumerate} \begin{minipage}{0.3\linewidth} \item Item 1 \item Item 2 \item Item 3 \end{minipage} \begin{minipage}{0.6\linewidth} \item This is item number 4 \item This is item number 5 \item This is item number 6 \end{minipage} \end{enumerate} \end{document}
\documentclass{article} \usepackage{multicol} \usepackage{amsmath} \begin{document} \begin{enumerate} \item Determinar la transpuesta de cada una de las sigientes matrices. Adem\'as si la matriz es cuadrada, calcular su traza. \begin{multicols}{2} \begin{enumerate} \item $\left( \begin{matrix} -4 & 2 \\ 5 & -1 \end{matrix} \right)$ \item $\left( \begin{matrix} 0 & 8 & -6 \\ 3 & 4 & 7 \end{matrix} \right)$ \item $\left( \begin{matrix} -3 & 9 \\ 0 & -2 \\ 6 & 1 \end{matrix} \right)$ \item $\left( \begin{matrix} 10 & 0 & -8 \\ 2 & -4 & 3 \\ -5 & 7 & 6 \end{matrix} \right)$ \end{enumerate} \end{multicols} \end{enumerate} \end{document}
一个网页版介绍:http://www.ctex.org/documents/shredder/tex_frame.html
特殊图案:加载bclogo宏包,\bcours(熊),\bccrayon(铅笔),\bcicosaedre(多面体)
LaTeX技巧693:安装 MathTime Professional 2 数学字体
LaTeX技巧693:安装 MathTime Professional 2 数学字体
曲面积分计算
国外论坛好题
In particular when $n=3$ one obtains $S_{\rm opt}=-{1\over2}$, and when $n=5$ one obtains $S_{\rm opt}=\cos{2\pi\over5}\doteq0.309$, as indicated in Zubzub's answer.
翻译事宜
一个偏微分方程求解
曲线积分的计算
写出圆周的单层位势$$U(a,b)=\int_{x^2+y^2=R^2}\ln \frac 1{\sqrt{(x-a)^2+(y-b)^2}}ds,\quad \text{其中}\, a^2+b^2\neq R^2$$
解.不妨设$R>0$,否则考察$-R$.令$x=R\cos\theta,y=R\sin\theta$,则$$ds=\sqrt{\left[x'(\theta)\right]^2+\left[y'(\theta)\right]^2}d\theta=Rd\theta.$$因此
\begin{align*}U(a,b)&=R\int_0^{2\pi}\ln \frac 1{\sqrt{(R\cos\theta-a)^2+(R\sin\theta-b)^2}}d\theta\\&=R\int_0^{2\pi}\ln \frac 1{\sqrt{R^2+a^2+b^2-2aR\cos\theta-2bR\sin\theta}}d\theta\\&=-\frac R2\int_0^{2\pi}\ln \left(R^2+a^2+b^2-2R\sqrt{a^2+b^2}\sin(\theta+\varphi)\right)d\theta,\quad \text{其中}\, \tan\varphi=\frac ab\\&=-\frac R2\int_0^{2\pi}\ln \left(R^2+a^2+b^2-2R\sqrt{a^2+b^2}\cos\theta\right)d\theta\\&=-\frac R2\int_0^{\pi}\ln \left(R^2+a^2+b^2-2R\sqrt{a^2+b^2}\cos\theta\right)d\theta-\frac R2\int_\pi^{2\pi}\ln \left(R^2+a^2+b^2-2R\sqrt{a^2+b^2}\cos\theta\right)d\theta\\&=-\frac R2\int_0^{\pi}\ln \left(R^2+a^2+b^2-2R\sqrt{a^2+b^2}\cos\theta\right)d\theta-\frac R2\int_0^\pi\ln \left(R^2+a^2+b^2+2R\sqrt{a^2+b^2}\cos\theta\right)d\theta.\end{align*}
中间几步注意到了对积分变量进行诸如$u=\theta+c$的变换改变积分上下限,而$\sin x$和$\cos x$的最小周期为$2\pi$.因此仍等于$0$到$2\pi$上的积分.
再由比较常见的Poisson积分公式有$$\int_0^\pi\ln (a\pm b\cos x)dx=\pi\ln\frac{a+\sqrt{a^2-b^2}}{2},\quad a\geq b\geq 0$$此公式证明只需把积分看成是关于$b$的函数,对$b$求导即可.
由此得$$\int_0^\pi\ln \left(a^2\pm 2ab\cos x+b^2\right)dx=\begin{cases}2\pi\ln a,&a\geq b\geq 0\\2\pi\ln b,&b\geq a\geq 0\end{cases}$$因此所求积分为
$$U(a,b)=\begin{cases}-2\pi |R|\ln |R|,& a^2+b^2<R^2\\-\pi |R|\ln \left(a^2+b^2\right),& a^2+b^2>R^2\end{cases}$$
在惯性系内一不受外力作用的刚性飞行器绕固定点转动的动态可用Euler方程描述\begin{align*}J_1\dot\omega_1&=(J_2-J_3)\omega_2\omega_3,\\J_2\dot\omega_2&=(J_3-J_1)\omega_3\omega_1,\\J_3\dot\omega_3&=(J_1-J_2)\omega_1\omega_2.\end{align*}其中$\omega_1,\omega_2,\omega_3$为刚体转动角速度的投影, $J_1,J_2,J_3$为惯性主轴的转动惯量且$J_1,J_2,J_3$均大于$0$.
(1)研究
保福寺烟酒僧的搬砖日常
前阵子忙着硕转博考试复习,去找了下Boss,给我一篇机器学习领域计算凸包的文章 Stratifying High-Dimensional Data Based on Proximity to the Convex Hull Boundary(基于接近凸包边界的高维数据分层)